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PROFESSOR: So today we'll be continuing along the theme of risk stratification. I'll spend the first half to 2/3

of today's lecture continuing where we left off last week before the discussion. I'll talk about

how does one derive the labels that one uses within a supervised machine learning approach.

I'll continue talking about how one evaluates risk stratification models. And then I'll talk about

some of the subtleties that arise when you want to use machine learning for health care,

specifically for risk stratification. And I think that's going to be one of the most interesting parts

of today's lecture. In the last third of today's lecture, I'll be talking about how one can rethink

the supervised machine learning problem, not to be a classification problem, but be something

closer to a regression problem.

And one now thinks about not will someone, for example, develop diabetes within one to three

years from now, but when precisely will they develop diabetes-- so the time to event. Then one

has to start to really think very carefully about the censoring issues that I alluded to last week.

And so I'll formalize those notions in the language of survival modeling. And I'll talk about how

one can do maximum likelihood estimation in that setting, and how one should do evaluation in

that setting.

So in our lecture last week, I gave you this example of risk stratification for type 2 diabetes.

The goal, just to remind you, was as follows. 25% of people in the United States have

undiagnosed type 2 diabetes. If we could take health insurance claims data that's available for

everyone who has health insurance, and use that to predict who, in the near-term-- next one

to three years-- is likely to be newly diagnosed with type 2 diabetes, then we could use it to

risk-stratify patient population. We could use that, then, to figure out who is most at risk, do

interventions for those patients, to try to get them diagnosed and get them started on

treatment if relevant.

But what I didn't talk much about was where did those labels come from. How do we know that



someone had a diabetes onset in that window that I show up there on the top? So what are

the answers? I mean, all of you should have read the paper by Razavian. And then also you

should hopefully have some ideas. Thoughts? A hint-- it was in supplementary material.

How did we define a positive case in that paper? Yep.

AUDIENCE: Drugs they were on.

PROFESSOR: Drugs they were on. OK, yeah, so for example, metformin, glucose-- sorry, insulin.

AUDIENCE: I think they did include metformin actually.

PROFESSOR: Metformin is a tricky case. Because metformin is often used for alternative indications. But

there are many medications, such as insulin, which are used pretty exclusively for treating

diabetes. And so you can look to see, does a patient have a record of taking one of these

diabetic medications in that window that we're using to define the outcome? If you see a

record of a medication, you might conjecture, this patient probably has diabetes.

But what about it they don't have any medication listed in that time window? What could you

conclude then? Any ideas? Yeah.

AUDIENCE: If you look at the HBA1C value, and you know the normal range, and if you see the

[INAUDIBLE] above like 7.5 or 7.

PROFESSOR: So you're giving me an alternative approach, not looking at medications, but looking at

laboratory test results. Look at their HBA1C results, which measures approximately an

average of three-month glucose values. And if that's out of range, then they're diabetic. And

that's, in fact, usually used as a definition of diabetes.

But that didn't answer my original question. Why is just looking at diabetic medications not

enough?

AUDIENCE: Some of the diabetic medications can be used to treat other conditions.

PROFESSOR: Sometimes there's ambiguity in diabetic medications. But we've sort of dealt with that already

by trying to choose an unambiguous set. What are other reasons?

AUDIENCE: You're starting with the medicine at the onset of diabetes [INAUDIBLE].

PROFESSOR: Oh, that's a really interesting point-- not the one I was thinking about, but I like it-- which is that



a patient might have been diagnosed with type 2 diabetes, but they, for whatever reason, in

that communication between provider and patient, they decided we're not going to start

treatment yet. So they might not yet be on treatment for diabetes, yet the whole health care

system might be very well aware that the patient is diabetic, in which case doing these

interventions for that patient might be irrelevant. Yep, another reason?

AUDIENCE: So a lot of people are just not diagnosed for diabetes. So they have it. So one label means

that they have diabetes, and the other label is a combination of people who have and don't

have diabetes.

PROFESSOR: So the point was, often you just might not be diagnosed for diabetes. That, unfortunately, is

not something that we're going to able to solve here. It is an issue, but we have no solution for

it.

No, rather there's a different point that I want to get at, which is that this data has biases in it.

So even if a patient is on a diabetes medication, for whatever reason-- maybe they are paying

cash for those medications. If they're paying cash for those medications, then there's not

going to be any record for the patient taking those medications in the health insurance claims.

Because the health insurer didn't have to pay for it.

But the reason that you gave is also a very interesting reason. And both of them are valid. So

for all of these reasons, just looking at the medications alone is going to be insufficient. And as

was just suggested a moment ago, looking at other indicators, like, for example, does the

patient have an abnormal blood glucose value or HBA1C value would also provide information.

So it's non-trivial, right? And part of what you're going to be doing in your next problem set,

problem set 2, is going to be thinking through how does one actually do this cohort

construction, not just what is your inclusion/exclusion criteria, but also how do you really derive

those labels from that data set.

Now the traditional answer to this has two steps to it. Step 1 is to actually manually label some

patients. So you take a few hundred patients, and you go through their data. You actually look

at their data, and decide, is this patient diabetic or are they not diabetic? And the reason why

you have to do that is because often what you might think of is obvious-- like, oh, if they're on

diabetes medication, they're diabetic-- has flaws to it. And until you really dig down and look at

the data, you might not recognize that that criteria has a flaw in it. So that chart review is really

an essential part of this process.



an essential part of this process.

Then the second step is, how do you generalize to get that label now for everyone in your

population. And again, there, there are usually two different types of approaches. The first

approach is to come up with some simple rule to try to then extrapolate to everyone. For

example, if they have, A, diabetes medication, or an abnormal lab test result, that would be an

example of a rule. And then you could then apply that to everyone.

But even those rules can be really tricky to derive. And I'll show you some examples of that in

just a moment. And as we know, machine learning is sometimes good as an alternative for

coming up with a rule. So there's often now a second approach to this being more and more

commonly used in the literature, which is to actually use machine learning itself to derive the

labels.

And this is a bit subtle, because it's machine learning for machine learning. So I want to break

that down for one second. When you're trying to derive the labels, what you want to know is

not, at time T, what's going to happen at time T plus W and onwards-- that's the original

machine learning task that we set out to solve-- but rather, given everything you know about

the patient, including the future data, is this patient newly diagnosed with diabetes in that

window that I show in black there, between T plus W and onward. OK?

So for example, this machine learning problem, this new machine learning problem, could

take, as input, lab test results, and medications, and a whole bunch of other data. And you

then use the few examples you labeled in step 1 to try to predict, is this patient currently

diabetic or not. You then use that model to extrapolate to the whole population. And now you

have your outcome label. It might be a little bit imperfect, but hopefully it's much better than

what you could have gotten with a rule. And then, now using those outcome labels, you solve

your original machine learning problem. Is that clear? Any questions?

AUDIENCE: I have one.

PROFESSOR: Yep.

AUDIENCE: How do you evaluate yourself then, if you have these labels that were produced with machine

learning, which are probabilistic?

PROFESSOR: So that's where this first step is really important. You've got to get ground truth somehow. And

of course once you get that ground truth, you create a train-and-validate set of that ground



truth. You run your machine learning algorithm with the trained one. You'd look at its

performance metrics on that validate set for the label prediction problem. And that's how you

get confidence in it.

But let's try to break this down a little bit. So first of all, what does this chart review step look

like? Well, if it's an electronic health record system, what you often do is you will pull up Epic,

or Cerner, or whatever the commercial EHR system is. And you will actually start looking at the

patient data. You'll read notes written by previous doctors about this patient. And you'll look at

their blood test results across time, medications that they're on. And from that you can usually

tell pretty coherent story what's going on with your patient.

Of course even better-- or the best way to get data is to do a prospective study. So you

actually have a research assistant standing in the room when a patient walks into a provider.

And they talk to the patient, and they take down really very clear notes what this patient has,

what they don't have. But that's usually too expensive to do prospectively. So usually what we

do is do this retrospectively.

Now, if you're working with health insurance claims data, you usually don't have the luxury of

looking at notes. And so what, in my group, we type typically do is we build, actually, a

visualization tool. And by the way, I'm a machine learning person. I don't know anything about

visualization. Neither do I claim to be good at it.

But you can't do the machine learning work unless you really understand your data. So we had

to build this tool in order to look at the data, in order to try to do that first step of

understanding, did we even characterize diabetes correctly.

So I'm not going go deep into it. By the way, you can download this. It's an open source tool.

But ballpark what I'm showing you here is one patient's data. I'm showing on this x-axis, time,

going from April to December. And on the y-axis, I'm showing events as they occurred.

So in orange are diagnosis codes that were recorded for the patient. In green are procedure

codes. In blue are laboratory tests. And if you see, on a given line, multiple dots along that

same line, it means that same lab test was performed multiple times. And you could click on it

to see what the results were. And in this way, you could start to tell a coherent story what's

going on with your patient.

All right, so tools like this is what you're going to need to able to do that first step from



something like health insurance claims data.

Now, traditionally, that first step, which then leads you to label some data, and then, from

there, you go and come up with these rules, or do a machine learning algorithm to get the

label, usually that's a paper in itself. Of course, not of interest to the computer science

community, but of extreme interest to the health care community. So usually there's a first

paper, academic paper, which evaluates this process for deriving the label, and then there are

much later papers which talk about what you could do with that label, such as the machine

learning problem we originally set out to solve.

So let's look at an example of one of those rules. Here is a rule, to derive from health

insurance claims data whether a patient has type 2 diabetes. Now, this isn't quite the same

one that we used in that paper, but it gets the idea across. First you look to see, did the patient

have a diagnosis code for type 1 diabetes. If the answer is no, you continue. If the answer is

yes, you've sort of ruled out. Because you say, OK, this patient's abnormal blood test results

are because they have type 1 diabetes, not type 2 diabetes. Type 1 diabetes usually is what

you can think of as juvenile diabetes, is diagnosed much earlier. And there's a different

mechanism behind it.

Then you look at other things-- OK, is there a diagnosis code for type 2 diabetes somewhere

in the patient's data? If so, you go to the right, and you look to see, is there a medication, an

Rx, for type 1 diabetes in the data. If the answer is no, you continue down this way. If the

answer is yes, you go this way. A yes of a type 1 diabetes medication doesn't alone rule out

the patient. Because maybe the same medications are used for type 1 as for type 2. So

there's some other things you need to do there.

Right, you can see that this starts to really quickly become complicated. And these manual-

based approaches end up having pretty bad positive-- so they're designed usually to have

pretty high positive predictive value. But they end up having pretty bad recall, in that they don't

end up finding all of the patients. And that's really why the machine-learning-based

approaches end up being very important for this type of problem.

Now, this is just one example of what I call a phenotype. I call this a phenotype. That's just

what the literature calls it. It's a phenotype for type 2 diabetes. And the word, phenotype, in

this context is exactly the same thing as the label. Yep.

AUDIENCE: What is abnormal mean?



PROFESSOR: For example, if the HA1C result is 6.5 or higher, you might say the patient has diabetes.

AUDIENCE: OK, so this is a lab result, not a medical--

PROFESSOR: Correct, yeah, thanks. Other questions.

AUDIENCE: What's the phenotype, which part exactly is the phenotype, like, the whole thing?

PROFESSOR: The whole thing, yeah. So the construction, where you say-- you follow this decision tree, and

you get to a conclusion, which is case, which means, yes they're type 2 diabetic. And if ever

you don't reach this point, then the answer is no, they're not type 2 diabetic. That's what I

mean by-- so that labeling is what we're calling the phenotype of type 2 diabetes.

Now later in the semester, people will use the word, phenotype, to mean something else. It's

an overloaded term. But this is what it's called in this context as well.

Now here's an example of a website-- it's from the PheKB project-- where you will find tens to

close to 100 of these phenotypes that have been arduously created for a whole range of

different conditions. OK, so if you go to this website, and you click on any one of these

conditions, like appendicitis, autism, cataracts, you'll see a different diagram of this sort I just

showed you. So this is a real thing. This is something that the medical community really needs

to do in order to try to derive the label that we can then use in our machine learning task.

AUDIENCE: I'm just curious, is the lab value ground truth? Like if somebody has diabetes, then they must

have [INAUDIBLE]. It means they have been diagnosed, and they must have--

PROFESSOR: Well, so, for example, you might have an abnormal glucose value for a variety of reasons. One

reason is because you might have what's called gestational diabetes, which is diabetes that's

induced due to pregnancy. But those patients typically-- well, although it's a predictive factor,

they don't always have long-term type 2 diabetes. So even the laboratory test alone doesn't

tell the whole story.

AUDIENCE: You could be diagnosed without having abnormal diabetic?

PROFESSOR: That's much less common here. The story will change in the future, because there will be a

whole range of new diagnosis techniques that might use new modalities, like gene expression,

for example. But typically, today, the answer is yes to that. Yep.



AUDIENCE: So if these are made by doctors, does that mean, for every single disease, there's one

definitive phenotype?

PROFESSOR: These are usually made by health outcomes researchers, which usually have clinicians on

their team. But the type of people who often work on these often come from the field of

epidemiology, for example. And so what was your question again?

AUDIENCE: Is there just one phenotype for every single disease?

PROFESSOR: Is there one phenotype for every different disease? In the ideal world, you'd have at least one

phenotype for every single disease that could possibly exist. Now, of course, you might be

interested in different aspects. Like you might be interested in not knowing just does the

patient have autism, but where they are on their autism spectrum. You might not be interested

in knowing just, do they have it now, but you also might want to know when did they get it. So

there's a lot of subtleties that could go into this.

But building these up is really slow. And validating them to make sure that they're going to

work across multiple data sets is really challenging, and usually is a negative result. And so it's

been a very slow process to do this manually, which has led me and many others to start

thinking about the machine learning approaches for how to do it automatically.

AUDIENCE: Just as a follow-up, is there any case where there's, like, five autism phenotypes, for example,

or multiple competing ones?

PROFESSOR: Yes. So there are often many different such rule-based systems that give you conflicting

results. Yes, that happens all the time.

AUDIENCE: Can these rule-based systems provide an estimate of when their condition was onset?

PROFESSOR: Right, so that's getting at one of the subtleties I just mentioned-- can these tell you when the

onset happened? They're not typically designed to do that, but one can come up with one to

do it. And so one way to try to do that is you change those rules to have a time period

associate to it. And then you can imagine applying those rules in a sliding window to the

patient data to see, when is the first time that it triggers. And that would be one way to try to

get a sense of when onset was. But there's a lot of subtleties to that, too.

So I'm going to move on now. I just want to give it some sense of what that deriving the labels

ends up looking like. Let's now turn to evaluation. So a very commonly used approach in this



field is to compute what's known as the Receiver-Operator Curve, or ROC curve.

And what this looks at is the following. First of all, this is well-defined for a binary classification

problem. For a binary classification problem when you're using a model that outputs, let's say,

a probability or some continuous value, then you could use that continuous valid prediction. If

you wanted to make a prediction, you usually threshold it, right? So you say, if it's greater than

0.5, it's a prediction of 1. If it's less than 0.5, prediction of zero.

But here we might be interested in not just what minimizes, let's say, 0-1 loss, but you might

also be interested in trading off, let's say, false positives for false negatives. And so you might

choose different thresholds. And you might want to quantify how do those trade-offs look for

different choices of those thresholds of this continuous value prediction. And that's what the

ROC curve will show you.

So as you move along the threshold, you can compute, for every single threshold, what is the

true positive rate, and what is the false positive rate. And that gives you a number. And you try

all possible thresholds, that gives you a curve. And then you can compare curves from

different machine learning algorithms.

For example, here, I'm showing you, in the green line, the predictive model obtained by using

what we're calling the traditional risk factors, so something like eight or 10 different risk factors

for type 2 diabetes that are very commonly used in the literature. Versus in blue, it's showing

you what you'd get if you just used a naive L1-regularized logistic regression model with no

domain knowledge, just sort of throw in the bag of features.

And you want to be up there. You want to be in that top left corner. That's the goal here. So

you would like that blue curve to be up there, and then all the way to the right.

Now, one way to try to quantify in a single number how useful any one ROC curve is is by

looking at what's called the area under the ROC curve. And mathematically, this is exactly

what you'd expect. This area is the area under the ROC curve. So you could just integrate the

curve, and you get that number out. Now, remember, I told you you want to be in the upper

left quadrant. And so the goal was to get an area under the ROC curve of a 1.

Now, what would a random prediction give you? Any idea? So if you're to just flip a coin and

guess-- what do you think?

AUDIENCE: 0.5.



PROFESSOR: 0.5?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Well, so I was a little bit misleading when I said you just flip a coin. You got to flip a coin with

sort of different noise rates. And each one of those will get you sort of a different place along

this curve. And if you look at the curve that you get from these random guesses, it's going to

be the straight line from 0 to 1. And as you said, that will then have an AUC of 0.5. So 0.5 is

going to be random guessing. 1 is perfect. And your algorithm is going to be somewhere in

between.

Now, of relevance to the rest of today's lecture is going to be an alternative definition--

alternative way of computing the area under the ROC curve. So one way to compute it is

literally as I said. You create that curve, and you integrate to get the area under it. But one can

show mathematically-- I'm not going to give you the derivation here, but you can look it up on

Wikipedia. One can show mathematically that an equivalent way of computing the area under

the ROC curve is to compute the probability that an algorithm will rank a positive-labeled

patient over a negative-labeled patient.

So mathematically what I'm talking about is the following thing. You're going to sum over pairs

of patients where-- I'm going to call x1 is a patient with label y1 equals 1. And x2 is a patient

with label y-- actually, I'll call it-- yeah, with label x2 equals 1. So these are two different

patients.

I think I'm going to rewrite it like this-- xi and xj, just for generality's sake. So we're going to

sum this up over all choices of i and j such that yi and yj have different labels. So that should

say yj equals 0.

And then you're going to look at-- what you want to happen, like suppose that you're using a

linear model here. So your prediction is given to you by, let's say, w.xj. What you want is that

this should be smaller than w.xi. So the j data point, remember, was the one that got the 0-th

and the i-th data point is the one that got the 1 label. So we want the score of the data point

that should've been 1 to be higher than the score of the data point which should've gotten the

label 0. And you just count up-- this is an indicator function. You just count up how many of

those were correctly ordered. And then you're just going to normalize by the total number of

comparisons that you do. And it turns out that that is exactly equal to the area under the ROC



curve. And it really makes clear that this is a notion that really cares about ranking. Are you

getting the ranking of patients correct? Are you ranking the ones who should have been given

1 higher than the ones that should have gotten the label 0.

And importantly, this whole measure is actually invariant to the label imbalance. So you might

have a very imbalanced data set. But if you were to re-sample with now making it a balanced

data set, your AUC of your predictive model wouldn't change. And that's a nice property to

have when it comes to evaluating settings where you might have artificially created a balanced

data set for computational concerns. Even though the true setting is imbalanced, there at least

you know that the numbers are going to be the same in both settings.

On the other hand, it also has lots of disadvantages. Because often you don't care about the

performance of the whole entire curve. Often you care about particular parts along the curve.

So for example, in last week's lecture, I argued that really what we often care about is just the

positive predictive value for a particular threshold. And we want that to be as high as possible

for as few people as possible. Like, find the 100 most risky people, and look at what fraction of

them actually developed type 2 diabetes. And that setting, what you're really looking at is this

part of the curve.

And so it turns out there are generalizations of area under the curve that focus on parts of the

curve. And that goes by the name of partial AUC. For example, if you just integrated from 0 to,

let's say, 0.1 of the curve, then you could still get a number to compare two different curves,

but it's focusing on the area of that curve that's actually relevant for your predictive purposes,

for your task at hand.

So that's all I want to say about receiver-operator characteristic curves. Any questions? Yep.

AUDIENCE: Could you talk more about what the drawbacks were of using this. Does the class imbalance--

is the class imbalance, then, always a positive effect?

PROFESSOR: So the thing is, when you want to use this approach, depending on how you're using the

[INAUDIBLE], you might not be able to tolerate a 0.8 false positive rate. So in some sense,

what's going on in this part of the curve might be completely irrelevant for your task. And so

one of the algorithms-- so one of these curves-- might look like it's doing really, really well over

here, and pretty poorly over here. But if you're looking at the full area under the ROC curve,

you won't notice that. And so that's one of the big problems. Yeah.



AUDIENCE: And when would you use this versus precision recall or--

PROFESSOR: Yeah, so a lot of the community is interested in precision recall curves. And precision recall

curves, as opposed to receiver-operator curves, have the property that they are not invariant

to class imbalance, which in many settings is of interest, because it will allow you to capture

these types of quantities. I'm not going to go into depth about your reasons for one or the

other. But that's something that you could read up about, and I encourage you to post to

Piazza about, and we have discussion on Piazza.

So the last evaluation quantity that I want to talk about is known as calibration. And calibration,

as I've defined it here, has to do with binary classification problems. Now, before you dig into

this figure, which I'll explain in a moment, let me just give you the gist of what I mean by

calibration. Suppose that your model outputs a probability. So you do logistic regression. You

get a probability out. And your model says, for these 10 patients, that their likelihood of dying

in the next 48 hours is 0.7. Suppose that's what your model output. If you were on the

receiving end of that result, so you heard that, 0.7, what should you expect about those 10

people? What fraction of them should actually die in the next 48 hours? Everyone could

scream out loud.

[INTERPOSING VOICES]

PROFESSOR: So seven of them. Seven of the 10 you would expect to die in the next 48 hours if the

probability for all of them that was output was 0.7. All right, that's what I mean by calibration.

So if, on the other hand, what you found was that only one of them died, then it would be a

very weird number that you're outputting. And so the reason why this notion of calibration,

which I'll define formally in a second, is so important, is when you're out putting a probability,

and when you don't really know how that probability is going to be used. If you knew-- if you

had some task loss in mind. And you knew that all that mattered was the actual prediction, 1 or

0, then that would be fine.

But often predictions in machine learning are used in a much more subtle way. Like for

example, often your doctor might have more information than your computer has. And so

often they might want to take the result that your computer predicts, and weigh that against

other evidence. Or in some settings, it's not just weighting about other evidence. Maybe it's

also about making a decision. And that decision might take exertion-- a utility, for example, a

patient preference for suffering versus getting a treatment that could have big, adverse



consequences.

And that's something that Pete is going to talk about much more later in the semester, I think,

how to formalize that notion. But at this point, I just want to sort of get out the point that the

probabilities themselves could be important. And having the probabilities be meaningful is

something that one can now quantify.

So how do we quantify it? Well, one way to try to quantify it is to create the following prompt.

Actually, we'll call it a histogram. So on the x-axis is the predicted probability. So that's what I

meant by p-hat. On the y-axis is the true probability. It's what I mean when I say the fraction of

individuals with that predicted probability that actually got the positive outcome. That's going to

be the y-axis. So I'll call that the true probability.

And what we would like to see is that this is a line, a straight line, meaning these two should

always be equal. And in the example I gave, remember I said that there were a bunch of

people with 0.7 probability predicted, but for whom only one out of them actually got the

positive end. So that would have been something like over here. Whereas you would have

expected it to be over there.

So you might ask, how do I create such a plot from finite data? Well, a common way to do so

is to bin your data. So you'll create intervals. So this bin is the bin from 0 to 0.1. This bin is the

bin from 0.1 to 0.2, and so on.

And then you'll look to see, OK, how many people for whom the predicted probability was

between 0 and 0.1 actually died? And you'll get a number out. And now here's where I can go

to this plot. That's exactly what I'm showing you here.

So for now, ignore the bar charts and the bottom, and just look at the line. So let's focus on

just the green line. Here I'm showing you several different models. For now, just focus on the

green line. So the green line, by the way, notice it looks pretty good. It's almost a straight line.

So how did I compute it? Well, first of all, notice the number of ticks are 1, 2, 3, 4, 5, 6, 7, 8, 9,

10. OK, so there are 10 points along this line. And each of those corresponds to one of these

bins. So the first point is the 0 to 0.1 bin. The second point is the 0.1 to 0.2 bin, and so on. So

that's how it computed this.

The next thing you notice is that I have confidence intervals. And the reason I compute these

confidence intervals is because sometimes you just might not have that much data in one of



these bins. So for example, suppose your algorithm almost never said that someone has a

predictive probability of 0.99. Then until you get a ton of data, you're not going to know what

fraction of those individuals actually went on to develop the event.

And you should be looking at sort of the confidence interval of this line, which should take that

into consideration. And a different way to try to understand that notion, now looking at the

numbers, is what I'm showing you in the bar charts in the bottom. On the bar charts, I'm

showing you the number of individuals or the fraction of individuals who actually got that

predicted probability.

So now let's start comparing the lines. So the blue line shown here is a machine learning

algorithm which is predicting infection in the emergency rooms. It's a slightly different problem

than the diabetes one we looked at earlier. And it's using a bag of words model from clinical

text. The red line is using just chief complaint. So it's using one piece of structured data that

you get at one point of time in the ER. So it's using very little information. And you can see that

both models are somewhat well calibrated.

But the intervals-- the confidence intervals of both the red and the purple lines gets really big

towards the end. And if you look at these bar charts, it explains why, because the models that

use less information end up being much more risk-averse. So they will never predict a very

high probability. They will always sort of stay in this lower regime. And that's why we have very

big confidence intervals there.

OK, so that's all I want to say about evaluation. And I won't take any questions on this right

now, because I really want to get on to the rest of the lecture. But again, if you have any

questions, post to Piazza, and I'm happy to discuss them with you offline.

So, in summary, we've talked about how to reduce risk stratification to binary classification. I've

told you how to derive the labels. I've given you one example of machine learning algorithm

you can use, and I talked to you about how to evaluate it. What could possibly go wrong?

So let's look at some examples. And these are a small number of examples of what could

possibly go wrong. There are many more.

So here's some data. I'm showing you-- for the same problem we looked at before, diabetes

onset, I'm showing you the prevalence of type 2 diabetes as recorded by, let's say, diagnosis

codes across time. All right, so over here is 1980. Over here is 2012. Look at that. It is not a



flat line. Now, what does that mean? Does that mean that the population is eating much more

unhealthy from 1980 to 2012, and so more people are becoming diabetic? That would be one

plausible answer.

Another plausible explanation is that something has changed. So in fact I'm showing you with

these blue lines, well, in fact, there was a change in the diagnostic criteria for diabetes.

And so now the patient population actually didn't change much between, let's say, this time

point at that time point. But what really led it to this big uptick, according to one theory, is

because the diagnostic criteria changed. So who we're calling diabetic has changed. Because

diseases are, at the end of the day, a human-made concept, you know, what do we call some

disease.

And so the data is changing, as you see here. Let me show you another example. Oh, by the

way, so the consequence of that is that automatically-derived labels-- for example, if you use

one of those phenotyping algorithms I showed you earlier, the rules-- what the label is derived

for over here might be very different from the label that's derived from over here, particularly if

it's using data such as diagnosis codes that have changed in meaning over the years. So

that's one consequence. There'll be other consequences I'll tell you about later.

Here's another example. And by the way, this notion is called non-stationarity, that the data is

changing across time. It's not stationary.

Here's another example. On the x-axis again I'm showing you time. Here each column is a

month, from 2005 to 2014. And on the y-axis, for every sort of row of this table, I'm showing

you a laboratory test. And here we're not looking at the results of the lab test, we're only

looking at what fraction of-- at how many lab tests of that type were performed at this point in

time.

And now you might expect that, broadly speaking, the number of glucose tests, the number of

white blood cell count tests, the number of neutrophil tests and so on might be pretty constant

across time, on average, because you're averaging over lots of people. But indeed what you

see here is that, in fact, there is a huge amount of non-stationarity. Which tests are ordered

dramatically changes across time. So for example you see this one line over here, where it's

all blue, meaning no one is ordering the test, until this point in time, when people start using it.

What could that be? Any ideas? Yeah.



AUDIENCE: [INAUDIBLE]

PROFESSOR: So the test was used less, or really, in this case, not used at all. And then suddenly it was

used. Why might that happen? In the back.

AUDIENCE: A new test.

PROFESSOR: A new test, right, because technology changes. Suddenly we come up with a new diagnostic

test, a new lab test. And we can start using it, where it didn't exist before. So obviously there

was no data on it before. What's another reason why it might have suddenly showed up? Yep.

AUDIENCE: It could be like annual check-ups become mandatory, or that it's part of the test admission at

hospital. Like, it's an additional test.

PROFESSOR: I'll stick with your first example. Maybe that test becomes mandatory. OK, so maybe there's a

clinical guideline that is created at this point in time, right there. And health insurers decide

we're going to reimburse for this test at this point in time. And the test might've been really

expensive. So no one would have done it beforehand. And now that the health insurance

companies are going to pay for it, now people start doing it. So it might have existed

beforehand. But if no one would pay for it, no one would use it.

What's another reason why you might see something like this, or maybe even a gap like this?

Notice, here in the middle, there's this huge gap in the middle. What might have explained

that?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Hold on. Yep, over here.

AUDIENCE: Maybe your patient population is mostly of a certain age, and coverage for something changes

once your age crosses a threshold.

PROFESSOR: Yeah, so one explanation-- I think it's not plausible in this data set, but it is plausible for some

data sets-- is that maybe your patients at time 0 were all of exactly the same age. So maybe

there's some amount of alignment. And suddenly, at this point in time, let's say, women only

get, let's say, their annual mammography once they turn a certain age. And so that might be

one reason why you would see nothing until one point in time. And maybe that would change

across time as well. Maybe they'll stop getting it at some point after menopause. That's not



true, but let's say.

So that's one explanation. In this case, it doesn't make sense, because the patient population

is very mixed. So you could think about it as being roughly at steady state. So they're not--

you'll have patients of all ages here.

What's another reason? Someone raised their hand over here. Yep.

AUDIENCE: Yeah, I was just going to say, maybe the EMR shut down for awhile, and so they were only

doing stuff on paper, and they only were able to record 4 things.

PROFESSOR: Ding ding ding ding ding. Yes, that's right. So maybe the EMR shut down. Or in this case, we

had data issues. So this data was acquired somehow. For example, maybe it was required

through a contract with something like Webquest or LabCorp. And maybe, during that four-

month interval, there was contract negotiation. And so suddenly we couldn't get the

Data for that time period. Or maybe our databases crashed, and we suddenly lost all the data

for that time period. This happens, and this happens all the time, and not just the health care

industry, but other industries as well.

And as a result of those systemic-type changes, your data is also going to be non-stationary

across time. So now we've seen three or four different explanations for why this happens. And

the reality is really a mixture of all of these.

And just as in the previous-- so in the previous example, notice how what really changed here

is that the derived labels might change meaning across time. Now the significance of the

features used in the machine learning models would really change across time. And that's one

of the consequences of this, particular if you're driving features from lab test values.

Here's one last example. Again, on the x-axis here, I have time. On the y-axis here, I'm

showing the number of times that you observed some diagnosis code of some kind. This cyan

line is ICD-9 codes. And this red line are ICD-10 codes. You might remember that Pete

mentioned in an earlier lecture that there was a big shift from ICD-9 coding to ICD-10 coding

at some point. When was that time? It was precisely this time.

And so if you think about the feature vector that you would derive for your machine learning

problem, you would have one feature for all ICD-9 codes, and one-- a whole set of features for

all ICD-10 codes. And those ICD-9-based features are going to be-- they're going to be used



quite a bit in this time period. And then suddenly they're going to be completely sparse in this

time period. And ICD-10 features start to become used. And you could imagine that if you did

machine learning using just ICD-9 data, and then you tried to apply your model at this point in

time, it's going to do horribly, because it's expecting features that it no longer has access to.

And this happens all the time.

And in fact, what I'm describing here is actually a major problem for the whole health care

industry. For the next five years, everyone is going to grapple with this problem, because they

want to use their historical data for machine learning, but their historical data is very different

from their recent data.

So now, in the face of all of this non-stationarity that I just described, did we do anything wrong

in the diabetes risk stratification problem that I told you about earlier? Thoughts. That was my

paper, by the way. Did I make an error? Thoughts. Don't be afraid. I'm often wrong. I'm just

asking specifically about the way I evaluated the models. Yep.

AUDIENCE: This wasn't an error, but one thing, like if I was a doctor I would like to see is the sensitivity to--

like, the inclusion criteria if I remove the HBA1C for instance. Like most people, they have

compared to having either Rx or [INAUDIBLE] then kind of evaluating the--

PROFESSOR: So understanding the robustness to changing the data a bit is something that would be of a lot

of interest. I agree. But that's not immediately suggested by the non-stationarity results. Not

something that's suggested by non-stationarity results.

Our TA in the front row has an idea. Yeah, let's hear it.

AUDIENCE: The train and test distributions were drawn from the same-- or the train and tests were drawn

from the same distribution.

PROFESSOR: So in the way that we did our evaluation there, we said, OK, we're going to set it up such that

on January 1, 2009, we're predicting what's going to happen in the following three years. And

we segmented our patient population into train, validate, and test, but at all times, using that

same setup, January 1 2009, as the prediction time.

Now, we learned this model, and it's now 2018. We want to apply this model today. And I

computed an area under the ROC curve. I computed positive predictive values using that

retrospective data. And I handed those off to my partners. And they might hope that those

numbers are reflective of what their models would do today. But because of these issues I just



told you about-- for example, that the number of people who have type 2 diabetes, and even

the definition of it has changed.

Because of the fact that the laboratory-- ignore this part over here. That's just a fluke. But the

fact, because of the laboratory tests that were available during training might be different from

the ones that are available now, and because of the fact that we have only ICD-10 data now,

and not ICD-9, for all of those reasons, our predictive performance is going to be really

horrible now, Particularly because of this last issue of not having ICD-9s. Our predictive model

is going to work horribly now if it was trained on data from 2008 or 2009. And so we would

have never ever even recognized that if we used the validation set up that we had done there.

So I wrote that paper when I was young and naive.

[AUDIENCE CHUCKLING]

I'm a little bit more gray-haired now. And so in our more recent work-- for example, this is a

paper which we're working on right now, done by a master's student of mine, Helen Zhou, and

is looking at predicting antibiotic resistance, now we're a little bit smarter about over evaluation

setup. And we decided to set it up a little bit differently.

So what I'm showing you now is the way that we chose, trained, validated and test for our

population. So we segmented our data. So the x-axis here is time, and the y-axis here are

people. So you can think of each person as being a different row. And you can imagine that

we randomly sorted the rows.

What we did is we segmented our data into these four quadrants. The first two quadrants, we

used for train and validate. Notice, by the way, that we have different people in the training set

as we do in the validate set. That's important for another quantity which I'll talk about in a

minute. So we used this data for train and validate. And that's, again, very similar to the way

we did it in the diabetes paper.

But now, for testing, we use this future data. So we used data from 2014 to 2016. And one can

imagine two different quadrants. You might be interested in knowing, for the same patients for

whom you made predictions on during training, how would your predictions do for those same

people at test time in the future data. And that's assuming that what we're predicting is

something that's much more myopic in nature. In this case it was predicting, are they going to

be resistant to some antibiotic?



But you can also look at it for a completely different set of patients, for patients who are not

used during training at all. And suppose that this 2 bucket isn't used at all, for those patients,

how do we do, again, using the future data for that.

And the advantage of this setup is that it can really help you assess non-stationarity. So if your

model really took advantage of features that were available in 2007, 2008, 2009, but weren't

available in 2014, you would see a big drop in your performance. Looking at the drop in

performance from your validate set in this time period, to your test set from that time period,

that drop in performance will be uniquely attributed to the non-stationarity. So it's a good way

to diagnose it. Yep.

AUDIENCE: Just some clarification on non-stationarity-- is it the fact that certain data is just lost altogether,

or is it the fact that it's just encoded differently, and so then it's difficult to get that mapping

correct?

PROFESSOR: Both. Both of these happen. So I have a big research program now which is asking not just

how-- so this is how you can evaluate and recognize there's a problem. But of course there's a

really interesting research question, which is, how can you make use of the non-stationarity.

Right, so for example, you had ICD-9/ICD-10 data. You don't want to just throw away the ICD-

9 data. Is there a way to use it?

So the naive answer, which is what the community is largely using today, is come up with a

mapping. Come up with a manual mapping from ICD-9 to ICD-10 so that you can sort of

manually transform your data into this new format such that the models you learn from this

older time is useful in the future time. That's the boring and simple answer.

But I think we could do much better. For example, we can learn new representations of the

data. We can learn that mapping directly in order to optimize for your sort of most recent

performance. And there's a whole bunch more that we can talk about later. Yep.

AUDIENCE: [INAUDIBLE] non-stationary change, this will [INAUDIBLE] does not ensure robustness to the

future.

PROFESSOR: Correct. So this allows you to detect that a non-stationarity has happened. And it allows you to

say that your model is going to generalize to 2014-2016. But of course, that doesn't mean that

your model's going to generalize to 2016-2018.



And so how do you do that? How do you have confidence in that? Well, that's a really

interesting research question. We don't have good answers to that today.

From a practical perspective, the best I can offer you today is, build in these checks and

balances all the time. So continuously sort of evaluate how you're doing on the most recent

data. And if you see big changes, throw a red flag. Build more checks and balances into your

deployment process. If you see a bunch of patients who are getting predicted probabilities of

1, and in the past, you'd never predicted probability 1, that might tell you something.

Then much later in the semester, we'll talk about robust machine learning approaches, for

example, approaches that have been designed to be robust against adversaries. And those

type of approaches as well will allow you to be much more robust to particular types of data

set shift, of which non-stationarity is one example. But it's a big, open research field. Yep.

AUDIENCE: So just to make sure I have the understanding correct, theoretically, if you could map

everything from the old data set to the new data set, like the encodings, would it still be OK,

like the results you get on the future data set?

PROFESSOR: If you could do a perfect mapping, and it's one to one, and the distributions of those things

also didn't change, then yeah. Really what you need to assess is, is there data set shift? Is

your training distribution, after mapping, the same as your testing distribution? If the answer is

yes, you're all good. If you're not, you're in trouble. Yep.

AUDIENCE: What seems to be the test set of traits set here? Or what [INAUDIBLE]?

PROFESSOR: So 1 is using data only from 2007-2013, 3 is using data only from 2014-2016.

AUDIENCE: But in the case, like, the output we care about happened in, like, 2007-2013, then that

observation would be not-- it wouldn't be useful.

PROFESSOR: Yeah, so for the diabetes problem, there's also just inclusion/exclusion criteria that you have to

deal with. For what I'm showing you here, I'm talking about a setting where you might be

making multiple predictions for patients across time. So it's a much more myopic prediction

task.

But one could come up with an analogy to this for the diabetes setting. Like, for example, just

hold out half of the patients at random. And then for your training set, use data up to 2009,

and evaluate on data only up to 2013. And for your test set, pretend as if it was January 1,



2013, and look at performance up to 2017. And so that would be-- you're changing your

prediction time to use more recent data.

So the next subtlety is-- it's a name that I put on to it. This isn't a standard name. This is what

I'm calling intervention-tainted outcomes. And so the example here came from your reading

for today. The reading was this paper on intelligible models for health care predicting

pneumonia risk in hospital 30-day admissions from KDD 2015.

So in that paper, they give an example-- it's a very old example-- of trying to use a predictive

model to understand a patient's risk of mortality when they come into the hospital. And what

they learned-- and they used a rule-based learning algorithm-- and what they discovered was

a rule that said if the patient has asthma, then they have low risk of dying. So these are all

patients who have pneumonia. So a patient who comes in with pneumonia and asthma has a

lower risk of dying than a patient who comes in with pneumonia and does not have a history of

asthma. OK, that's what this rule says.

And this paper argued that there's something wrong with that learned model. Any of you

remember what that was? Someone who hasn't talked today, please. Yeah, in the back.

AUDIENCE: It was that those with asthma had more aggressive treatment. So that means that they had a

higher chance of survival.

PROFESSOR: Patients with asthma had more aggressive treatment. In particular, they might have been

admitted to the intensive care unit for more careful vigilance. And as a result, they had better

outcomes. Yes, that's exactly right.

So the real story behind this is that risk stratification, as we talked about the last couple weeks,

it's used to drive interventions. And those interventions, if they happened in the past data,

would change the outcomes.

So in this case, you might imagine using the learned predictive model to say, a new patient

comes in, this new patient has asthma, and so we're going to say they're low risk. And if we

took a naive action based on that prediction, we might say, OK, let's send them home. They're

at low risk of dying. But if we did that, we could be killing people. Because the reason why they

were low risk is because they had those interventions in the past.

So here's what's going on in that picture. You have your data, X. And you're trying to make a

prediction at some point in time, let's say, emergency department triage. You want to predict



some outcome Y, let's say, whether the patient dies at some defined point in the future.

Now, the challenge is that, as stated in the machine learning tasks that you saw there, all you

had access to was X and Y, the covariance of the features and the outcome. And so you're

predicting Y from X, but you're marginalizing over everything that happens in between, in this

case, the treatment. So the good outcomes, people surviving, might have been due to what's

going on in between. But what's going on in between is not even observed in the data

necessarily.

So how do we address this problem? Well, the first thing I want you to think about is, can we

even recognize that this is a problem? And that's where that article really suggests that using

an unintelligible model, a model that you can introspect and try to understand a little bit, is

actually really important for even recognizing that weird things are happening. And this is a

topic which we will talk about in a lecture towards the end of the semester in much more-- Jack

will talk about algorithms for interpreting machine learning models.

So that's important. You've got to recognize what's going on. But what do you do about it? So

here are some hacks.

Hack number 1-- modify the model. This is the solution that is proposed in the paper you read.

They said, OK, if it's a simple rule-based prediction that the learning algorithm outputs to you,

you could see the rule that doesn't make sense, you could use your clinical insight to

recognize it doesn't make sense. You might even be able to explain why it happened. And

then you just remove that rule.

So you manually modify the model to push it towards something that's more sensible. All right,

so that's what was suggested. And I think it's nonsense. I don't think that's ever going to work

in today's world. In today's world of high-dimensional models, there's always going to be

surrogates which are somehow picked up by a learning algorithm that you will not even

recognize. And it will be really hard to modify it in the way that you want.

Maybe it's impossible using the simple approach, by the way. Another interesting research

question-- how do you actually make this work in a high-dimensional setting?

But for now, let's say we don't know how to do it in a high-dimensional setting. So what are

your other choices? Hack number 2 is to redefine the outcome altogether, to change what

you're predicting. So for example, if you go back to this picture, and instead of trying to predict



Y, death, if you could try to find some surrogate for the thing you care about, which is pre-

treatment, and you predict that thing instead, then you'll be back in business.

And so, for example, in one of the optional readings for-- or actually I think in the second

required reading for today's class, it was a paper about risk revocation for sepsis, which is

often caused by infection. And what they show in that article is that there are laboratory test

results, such as lactate, and there are others, which can give you a hint that this patient might

be on a path to clinical deterioration. And that test might precede the interventions to try to

take care of that condition. And so if you instead change your outcome to be predicting that

surrogate, then you're getting around this problem that I just pointed out.

Now, a third hack is from one of the optional readings from today's lecture, this paper by Suchi

Saria and her students, from Science Translational  Medicine 2015. It's a really well-written

paper. I highly recommend reading it. In that paper, they suggest formalizing the problem as

one of censoring, which is what we'll be talking about for the very last third of today's lecture.

In particular, what they say is suppose you see that a patient is treated for the condition. Let's

say they're treated for sepsis. Then if the patient is treated for that condition, then we don't

know what would have happened to them had they not been treated. So we don't observe the

outcome, death given no treatment.

And so we're going to treat it as an unknown outcome. And for patients who were not treated,

but ended up dying due to sepsis, then they're not censored. And what I'll show you in the

later part of the class is how to learn from censored data. So this is another formalization

which tries to address this problem that we pointed out.

Now, I call these hacks because, really, I think what we should be doing is formalizing it using

the language of causality. Once you do this introspection and you realize that there is

treatment, in fact, you should be rethinking about the problem as one of now having three

quantities of interest. There's the patient, everything you know about them at triage. That's the

X-variable I showed you before. There's the outcome, let's say, Y. And then there's that

everything that happened in between, in particular the interventions that happened in

between. We'll call that T, for treatment.

And the question that one would like to ask in order to figure out how to optimally care for the

patient is one of, will admission to the ICU, which is the intervention that we're considering

here, will that lower the likelihood of death for the patient? And now when I say lower, I don't



mean correlation, I mean causation. Will it actually lower the patient's risk of dying? I think we

need to hit these questions on the head with actually thinking about causality to try to formalize

this properly. And if you do that, this will be a solution which will generalize to the high-

dimensional settings that we care about in machine learning.

And this will be a topic that we'll talk really in-depth after spring break. But I wanted to give you

this as one motivation for why it's so important-- there are many other reasons-- to really think

about it from a causal perspective.

OK, so subtlety number 3-- there's been a ton of hype in the media about deep learning and

health care. A lot of it is very well warranted. For example, the advances we're seeing in areas

ranging from radiology and pathology to interpretation of EKGs are all really being transformed

by deep learning algorithms.

But the problems I've been telling you about for the last couple of weeks, of doing risk

stratification on electronic health record data, such as taxed notes, such as lab test results and

vital signs, diagnosis codes, that's a different story. And in fact, if you look closely at all of the

papers, all the papers that have been published in the last few years that have been trying to

apply the gauntlet of deep learning algorithms at those problems, in fact, the gains are very

small.

And so what I'm showing you here is just one example of such a paper. This is a paper that

received a lot of media attention. It's a Google paper called "Scalable and Accurate Deep

Learning with Electronic Health Records." And if you go across the United States, if you go

internationally, you talk to chief medical information officers, they're all going to be telling you

about this paper. They've all read it, they've all heard about it, and they all want to use it.

But what is this actually doing? What's going on behind the scenes? Well, this paper uses the

same sorts of data we've been talking about. It takes vitals, notes, orders, medications, thinks

about it as a timeline, summarizes it, then uses a recurrent neural network. It also uses

attentional architectures. And there's some pretty smart people on this paper-- you know,

Greg Corrado, Jeff Dean, are all co-authors of this paper. They know what they're doing.

All right, so they use these algorithms to predict a number of downstream problems--

readmission risk, for example, 30-day readmission, like you read about in your readings for

this week. And they see they get pretty good predictions. But if you go to the supplementary



material, which is a bit hard to find, but here's the link for all of you, and I'll post it to my slides.

And if you look at the very last figure in that supplementary material, you'll see something

interesting.

So here are those three different tasks that they studied-- inpatient mortality prediction, 30-day

readmission, length-of-stay prediction. The first line each of these buckets is what your deep

learning algorithm does. Over here, they have two different hospitals. I think it might have

been University of Chicago and Stanford. And they're showing the area under the ROC curve,

which we've talked about, performance for each of these tasks for their best models. And in

the parentheses, they give confidence intervals-- let's say something like 95% confidence

intervals-- for area under the ROC curve.

Now, the second line that you see is called full-feature enhanced baseline. It's using the same

data, but it's using something very close to the feature represetnation that you saw in the

paper by Narges Razavian, so that paper on diabetes prediction that I told you about and

we've been criticizing. So it's using that L1-regularized logistic regression with a smart set of

features.

And what you see across all three settings is that the results are not physically significantly

different. So let's look at the first one, hospital A, deep learning, 0.95 AUC. This L1-regularized

logistic regression, 0.93. 30-day readmission, 0.77, 0.75, 0.86, 0.85. And the confidence

intervals are all overlapping.

So what's going on? So I think what you're seeing here, first of all, is a recognition by the

machine learning community that-- in this case, a late recognition that simpler approaches

tend to work well with this type of data. I don't think this was the first thing that they tried. They

tried probably the deep learning algorithms first.

Second, we're all grasping at this, and we all want to come up with these better algorithms, but

so far we're not doing that well. And I'll tell you more about that in just a second. But before I

finish with the slide, I want to give you a punch line I think is really important. You might come

home from this and say, you know what, it's not that much better, but it's a little bit better--

0.95 to 0.93. Suppose it was tight confidence intervals, there might be a few patients whose

lives you could save with that.

But because all the issues I've told you about up until now, of non-stationary, for example,

those gains disappear. In many cases, they even reverse when you actually go to deploy



these models because of that data set shift for non-stationarity. It so happens that the simpler

models tend to generalize better when your data changes on you. And this is nicely explored

in this paper from Kenneth Jung and Nigam Shah in Journal  of  Biomedical  Informatics, 2015.

So this is something that I want you to think about. Now let's try to answer why. Well, the areas

where we've been seeing recurrent neural networks doing really well-- in, for example, speech

recognition, natural language processing, are areas where, often-- for example, you're

predicting what is the next word in a sequence of words, the previous few words are pretty

predictive. Like, what is the next [PAUSES] that I'm going to say? What is it?

AUDIENCE: Word.

PROFESSOR: Word, right, and you knew that, right, because it was pretty obvious to predict that. And so the

models that are good at predicting for that type of data, it doesn't mean that they should be

good for predicting for a different type of sequential data. Sequential data which, by the way,

lives in many different time scales. Patients who are hospitalized, you get tons of data for them

at a time, and then you might go months without any data on them. Data with lots of missing

data. Data with multivariate observations at each point in time, not just a single word at that

point in time.

All right, so it's a different setting. And we shouldn't expect that the same architectures that

have been developed for other problems will generalize immediately to these problems.

Now, I do conjecture that there are lots of nonlinear attractions where deep neural networks

could be very powerful at predicting for. But I think they're subtle. And I don't think that we

have enough data currently to deal with the fact that the data is messy and that the non-linear

interactions are subtle. We just can't find them right now. But this shouldn't mean that we're

not going to find them a few years from now. I think this deservedly is a very interesting

research direction to work on.

And a final reason to point out is that the features that are going into these types of models

are actually really cleverly-chosen features. A laboratory test result, like looking at your A1C--

what is A1C? So it's something that had been developed over decades and decades of

research, where you recognize that looking at a particular protein is actually informative as

something about a patient's health.

So the features that we're using that go into these models were designed-- first, they were



designed for humans to look at. And second, they were designed to really help you with

decision-making, or largely independent features from other information that you have about a

patient. And all of those are reasons, really, I think why we're observing these subtleties.

OK, so for the last 10 minutes of class-- I'm going to have to hold questions, because I want to

get through all the material. But please post them to Piazza. For the last 10 minutes of class, I

want to change gears a little bit, and talk about survival modeling.

So often we want want to talk about predicting time to some event. So this red dot here--

sorry, this black line here is what I mean by an event. That event might be, for example, a

patient dying. It might mean a married couple getting divorced. It might mean the day that

what you graduate from MIT. And the red dot here denotes censored events. So for whatever

reason, we don't have data on this patient, patient S3, after time step 4. They were censored.

So we do know that the event didn't occur prior to time step 4. But we don't know if and when

it's going to occur after time step 4, because we have missing data there. OK, so this is what I

mean by right-censored data.

So you might ask, why not just use classification-- like binary classification-- in this setting?

And that's exactly what we did earlier. We thought about formalizing the diabetes risk

stratification problem as looking to see what happens years 1 to 3 after the time of prediction.

That was with a gap of one year.

And there a couple of reasons why that's perhaps not what you really wanted to do. First, you

have less data to use during training. Because you've suddenly excluded patients for whom--

or to differently-- if you have patients for whom they were censored during that time window,

you're throwing them out. So you have fewer data points there. That was part of our

inclusion/exclusion criteria.

Also, when you go to deploy these models, your model might say, yes, this patient is going to

develop type 2 diabetes between one and three years from now. But in fact what happened is

they develop type 2 diabetes 3.1 years from now. So your model would count this as a

negative. Or it would be a false positive. The prediction would be a false positive. But in reality,

your model wasn't actually that bad. We did pretty well. We didn't quite get the right range, but

they did get diagnosed diabetes right outside that time window.

And so your measures of performance are going to be pessimistic. You might be doing better



than you thought. Now, you can try to address these two challenges in many ways. You can

imagine a multi-task learning framework where you try to predict what's going to happen one

to two years from now, what's going to happen two to three years from now, three to four, and

so on. Each of those are different binary classification models. You might try to tie together the

parameters of those models via a multi-task learning formulation. And that will get you closer

to what you care about.

But what I'll tell you about in the last five minutes is a much more elegant approach to trying to

deal with that. And it's akin to regression. So that leads to my second point-- why not just treat

this as a regression problem? Predict time to event. You have some continuous valued

outcome, the time until diagnosis diabetes. Just try to minimize mean squared-- minimize your

squared error trying to predict that continuous value.

Well, the first challenge to think about is, remember where that mean squared error loss

function came from. It came from thinking about your data as coming from a Gaussian

distribution. And if you do maximum likelihood estimation of this Gaussian distribution, it turns

out to look like minimizing a squared loss.

So it's making a lot of assumptions about the outcome. For one, it's making the assumption

that outcome could be negative or positive. A Gaussian distribution doesn't have to be

positive. But here we know that T is always non-negative. In addition, there might be long tails.

We might not know exactly when the patient's going to develop diabetes, but we know it's not

going to be now. It's going to be at some point in the far future. And that may also look very

non-Gaussian. So typical regression approaches aren't quite what you want.

But there's another really important problem, which is that if you naively remove those

censored points-- like, what do you do for the individuals where you never observe the time--

where the never get diabetes, because they were censored? Well, if you just remove those

from your learning algorithm, then you're biasing your results.

So for example, if you think about the average age of diabetes onset, if you only look at people

who actually were observed to get diabetes, it's going to be much closer to now. Because

obviously the people who were censored are people who got it much later from the censoring

time. So that's another serious problem.

So the way they we're trying to formalize this mathematically is as follows. Now we should

think about having data which has, again, features x, outcome-- what we usually call Y for the



outcome in regression, but here I'll call it capital T, because of the time to the event. And now

we have an additional variable-- so it's no longer a two-point, now it's a triple-- b. And b is

going to be a binary variable, which is saying, was this individual censored-- was the time, t,

denoting a censoring event, or was it denoting the actual event happening? So it's

distinguishing between the red and the black. So black is b equals 0. Red is b equals 1.

OK, so now we can talk about learning a density, P of t, which I'll also call f of t, which is the

probability of death at time t. And associated with any density, of course, is the cumulative

density function, which is the integral from 0 to any point of the density. Here we'll actually look

at 1 minus the CDF, what's called the survival function. So it's looking at probability of T, actual

time of the event, being larger than some quantity, little t. And that's, of course, just the

integral of the density from little t to infinity.

All right, so this is the survival function. It's of a lot of interest. You want to know, is the patient

going to be diagnosed with diabetes two or more years from now.

So pictorially, what you're interested in is something like this. You want to estimate these

conditional distributions. So I call it conditional because you want to condition on the covariant

to individual x. So what I'm showing you, this black line, is your density, little f of t. And this

white area here, the integral from little t to infinity, meaning all this white area, is capital S of t.

It's the probability of surviving longer than time little t.

OK, so the first thing you might do is say, we get these data, these tuples, and we want to try

to estimate that function, little f, the probability of death at some time. Or, equivalently, you

might want to estimate the survival time, capital S of t, which is the CDF version. And these

two are related to another just by some calculus.

So a method called the Kaplan-Meier estimator is a non-parametric method for estimating that

survival probability, capital S of t. So this is the probability that an individual lives more than

some time period.

So first I'll explain to you this plot, then I'll tell you how to compute it. So the x-axis of this plot is

time. The y-axis is this survival property, capital S of t. It's the probability that an individual lives

more than this amount of time. I think this x-axis is in days, so 500, 1,000, 1,500, 2,000. This

figure, by the way, was created by one of my students who's studying a multiple myeloma data

set.



So you could then ask, well, under what covariants do you want to compute this survival? So

here, this method I'll tell you about, is very good for when you don't have any features. So all

you want to do is estimate that density by itself. And of course you could apply a method for

multiple populations. So what I'm showing you here is applying it for two different populations.

Suppose there's just a single binary feature. And we're going to apply it to the x equals 0 and

to x equals 1. That gets you two different curves out. But here the estimator is going to work

independently for each of the two populations.

So what you see here on this red line is for the x equals 0 population. We see that, at time 0,

everyone is alive, as you would expect. And at time 1,000, roughly 60% individuals are still

alive for time 1,000. And that sort of stays constant.

Now you see that, for the other subgroup, the x equals 1 subgroup, again, time step 0, as you

would expect, everyone is alive. But they survive much longer. At time step 1,000, over 75% of

them are still alive. And of course of interest here is also confidence balance. I'm not going to

tell you how can you do that, but it's in some of the optional readings. And by the way, there

are more optional readings given on the bottom of these slides.

And so you see that there is a statistically significant difference between x equals 1 and x

equals 0. These people seem to be surviving longer than these people. And you get that

immediately from this curve.

So how do we compute that? Well, we take those observed times, those capital Ts, and here

I'm going to call them just y. I'm going to sort them. So these are sorted times. And I don't care

whether they were censored or not censored.

So y is just all of the times for all of the patients, whether they are censored or not. dK I want

you think about as 1. It's the number of events that occurred at that time. So if everyone had a

unique time of censoring or death, then dK is always 1. K is indexing one of these things. n of

K is the number of individuals alive and uncensored by the K-th time point.

Then what this estimator says is that S of t-- so the estimator at any point in time-- is given to

you by the product over K such that y of K is less than or equal to t. So it's going over the

observed times up to little t, of 1 minus the ratio of 1 over-- so I'm thinking about dK as 1-- 1

over the number of people who are alive and uncensored by that time. And that has a very

intuitive definition.



And one can prove that this estimator gives you a consistent estimator of the number of

people who are alive-- sorry, the number of survival probability at any one point in time for

censored data. And that's critical. This works for censored data. So I'm past time today. So I'll

finish the last few slides on Tuesday's lecture. So that's all for today. Thanks.


