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A Brief Introduction to Cardiac Structure and 
Function 
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Coronary heart disease (CHD) is the leading global 
cause of death 

CHD is the leading cause 
of death in both 
developed and developing 
countries. 

Lancet, 2018 

4 © Mayo Foundation for Medical Education and Research. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see 
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The heart’s primary function is as a pump 

1. The heart must deliver
oxygenated blood throughout
the circulatory system

2. Blood supplies tissues with
oxygen for ATP production,
delivers and receives signaling
molecules, and removes waste

3. The heart pumps ~5L of blood
per minute, which can expand to
20-35L per minute during
exercise

4. The rhythmic function of the
heart results in >2 billion heart
beats in a typical lifetime

© source unknown. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see 
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The structure of the heart 

© source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

4 chambers: RA, RV, LA, LV 
4 valves:TV, PV, MR,AV 
2 circulations in series: 

© Tineke Willems and Marieke Hazewinkel, courtesy of The Radiology Assistant. All rights 
reserved. This content is excluded from our Creative Commons license. For more 
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The Cardiac Cycle:  Synchronized Electrical and 
Mechanical Activation 

1. The Wiggers
diagram aligns
mechanical and
electrical events
(and heart sounds)

2. The heart alternates
between periods of
relaxation and filling
(diastole) and
periods of
contraction and
ejection of blood
(systole)

© Julian Andrés Betancur Acevedo. All rights reserved. This 
content is excluded from our Creative Commons license. For 
more information, see https://ocw.mit.edu/help/faq-fair-use/ 7
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Visualizing the Heart in Motion 

8 © source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

https://ocw.mit.edu/help/faq-fair-use/


Diseases of the heart are organized into
abnormalities of contractile function, coronary
blood supply, circulatory flow, or heart rhythm 

Abnormality Disease Names Presentation Treatment 
Contractile function Heart failure Shortness of 

breath, fluid 
buildup in legs 

medications, ventricular 
assist device, transplant 

Coronary blood
supply 

Coronary artery 
disease, myocardial 

infarction 

Chest pain,
shortness of breath 

angioplasty/stenting;
coronary artery bypass 

grafting 

Circulatory flow Aortic stenosis/
regurgitation, mitral 

stenosis/regurgitation, 

Light
headedness, 
shortness of 

breath, fainting 

valve replacement, valve 
repair 

Heart rhythm Atrial fibrillation/
flutter, ventricular 

tachycardia, sick sinus 
syndrome 

palpitations,
fainting, cardiac 

arrest 

ablation, implantable
defibrillator, pacemaker 
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The heart is a complex multicellular organ 

© The Cardio Research Web Project. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

1. The cardiomyocyte is the
primary excitable and
contractile cell in the heart

2. But … only 31% of cells in the
heart are cardiomyocytes

3. Cardiac function and disease
arises from the interplay of a
broad group of cells

4. Other cell types:  endothelial,
fibroblast, leukocytes

A. R. Pinto et al., "Revisiting Cardiac Cellular Composition," Circ Res. 2016 
February 5; 118(3): 400–409. © American Heart Association. All rights 
reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Cardiac Imaging in Medical Decision Making 
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Cardiac imaging plays a critical role in diagnosis 
(and definitions of disease) 

Modality Cost Approach Diagnostic Utility
Electrocardiogram

(ECG) 
$ Voltage 

differences 
Myocardial infarction 

Echocardiography $$-$$$ Ultrasound 
(sound waves);
Doppler shift 

Quantitation of cardiac 
structure and function, 
heart failure, valvular 
disease, pulmonary 

hypertension 
MRI $$$$ Magnetic 

resonance 
(volumetric

reconstruction) 

Quantitation of cardiac 
structure and function, 
heart failure, valvular 

disease 
Angiography

(Fluoroscopy and
Computed

Tomography) 

$$$$ X-ray
(volumetric

reconstruction for 
CT) 

Epicardial coronary 
artery disease 

SPECT/PET $$$$ Radionuclide 
tracer 

Coronary artery 
disease (inferred); 

microvascular disease 
Intracardiac 
pressure

transducers 

$$$ Pressure 
transducer 

Heart failure, valvular 
disease, pulmonary 

hypertension 

Many cardiac diseases are defined (for better or worse) as 
departures from normal anatomic/physiologic values 12
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Cardiac decisions are often (but not always) guided 
by inputs from imaging 

Disease Decision Inputs 
Heart failure Decision to implant a

defibrillator to prevent 
sudden death 

Symptoms +
ejection fraction of

the heart <35% 

Coronary artery
disease 

Angioplasty and
stenting of a coronary 

artery 

Symptoms +
stenosis > 70% 

Aortic stenosis Valve replacement Symptoms +
valve area + 

enlargement of the
heart 

Atrial fibrillation Decision to start 
anticoagulation to

prevent stroke 

Age, sex, other
diagnoses 

Myocardial
infarction 

Decision to start 
aspirin and a statin to
prevent a future heart 

attack 

A risk model 
based on age, sex,
lab values, blood 

pressure, diabetes 

1. Information content of 
imaging can be very high … 
but decisions are based on 
historical patient populations 
followed through time with 
the relevant disease 

2. Risk model and decision 
analysis is dictated by what 
data are available for these 
historical populations 

3. Imaging is available for 
patient populations for 
which it is a part of the 
accepted management plan 
… but is unlikely to be found 
for other diseases given cost 
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Imaging Modalities and Data 
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How Medical Imaging Data Are Stored 

1. DICOM (Digital Imaging and Communications Standard) is
the international standard to transmit, store, retrieve, print,
process, and display imaging information

2. Image/video files are stored in DICOM format, and combine
a compressed image with a DICOM “header” which includes
characteristics of the image

3. Open access libraries like GDCM, pydicom facilitate
compressing/uncompressing; reading and editing header

4. Osirix Lite provides a free DICOM viewer

15



Where can I get access to data? 

1. Most imaging data is housed in data archives (increasingly 
“vendor neutral”) 

2. Access is often highly limited: 
1. Some images have burned in pixels with patient names, dates 

of birth 
2. Scalable solutions for download and de-identification are 

not always available (these would facilitate changing vendors) 
3. Some systems have monetized their imaging data 

3. Labels (e.g. diagnoses, measurements) are often stored 
separately in the electronic health record 

4. Scale of data (at BWH) - clearly relates to cost of the study as 
well as perceived utility: 
1. Electrocardiograms:  30 million ECGs 
2. Echocardiography:  300,000-500,000 studies 
3. Cardiac PET:  8000 studies 16



Example of a DICOM header 

Unfortunately, there can be some instrument to instrument 
variability in how some fields are represented. 
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Characteristics of Cardiac Imaging Data 

1. Compression: lossy vs. lossless
2. Spatial resolution: number of

pixels; pixel dimensions
3. Sampling frequency (temporal

resolution):  very high for
various ultrasound modalities
and coronary angiography,
moderate for CT scanners

4. Coronary artery velocity is
10-65 mm/seconds

5. “Gating”:  electrocardiogram
information can be coupled
with imaging information to
average images across
corresponding portions of the
cycle

Modality Spatial Resolution Temporal
resolution 

Echocardiography 2-3 mm 1-5 ms for
some modes; 

typically 20-30ms
for 2D 

MRI 0.1mm 30-100 ms

Angiography
(Fluoroscopy) 

0.1mm 1-10 ms

Computed
Tomography 

0.5mm in x,y;
0.5-0.625mm in z 

65-175 ms

SPECT/PET 8-10 mm for
SPECT; 3-5 mm for 

PET 

minutes 

18



Relevant Topics in Computer Vision 
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Machine learning in cardiac disease - what 
physician practices can we mimic? 

1. All current measurements (cardiac
chamber areas, ventricular
thickness) are performed manually
1. Severity of a stenosis of the

coronary artery
© American College of Cardiologists.
All rights reserved. This content is
excluded from our Creative Commons 
license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 

2. Left ventricular cardiac
volumes (and by comparison
across the cardiac cycle,
ejection fraction)

2. Some disease diagnoses involve
classification of images/videos

We’ll come back to whether these contributions would be seen as 
© Stanford Medicine. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Many priorities in computer vision are of great 
interest to cardiac imaging 

1. Image (and video) classification: assigning a label to
an image/video

2. Semantic segmentation:  associating each pixel in an
image with a class label

3. Image registration: mapping different sets of images
onto one coordinate system

21



Image classification: an obvious task to mimic 

1. Many simple disease recognition tasks exist in medicine - and can be
carried out by an experienced radiologist in 2 minutes or less
1. e.g. lung cancer or not
2. pneumonia or not
3. breast cancer or not
4. fluid around the heart or not

2. Many of the first successes in medical image classification have
involved situations with very large data sets, already labeled in the
context of routine clinical care
1. Chest x-rays
2. Mammograms

3. Barriers to data export and sharing have limited the size of many
other data sets

22



Image classification: convolutional neural 
networks have rekindled an interest in automated 
medical image classification 

Red Green Blue 

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4) 

Convolutions and ReLU 

Max pooling 

Max pooling 

Convolutions and ReLU 

Convolutions and ReLU 

1. Representation learning
2. No need for hand-engineering of features
3. Transfer learning: important in training data poor scenarios

Image from LeCun, Bengio & Hinton, "Deep Learning," Nature 521 (28 May 2015). © Springer Nature Limited. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 23
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Image classification: will anyone use it? 

1. If a radiologist takes 2 minutes to read a study, how much
benefit is there to automate the process

2. Liability is an enormous reason why we don’t task-shift image
interpretation to less-skilled personnel - radiologists are among
the most sued physicians

3. So it is unlikely we will see the benefits of other disciplines
where a machine will be permitted to independently read a
study BUT:
1. If there are 1000 X-rays to (over)read or if the hospital is in

off-hours (overnight, weekend), a machine can pre-read and
decide what’s most urgent to look at

2. An independent read should catch some missed diagnoses
4. The calculus may change in resource poor settings

24



 

Image classification: explaining the diagnosis 

1. All imaging-based medical decisions have typically required a
corresponding human confirmation of a visual finding

2. In some cases, the need is unambiguous: you can’t take a biopsy of a
tumor you can’t localize; nor can you submit a report that doesn’t
localize the abnormality

3. Increasingly patients and providers share in decisions:  requiring both
to be convinced of the validity of the conclusion

4. CNNs raise some concerns as to whether a simple explanation can
always be given

Image from Murdoch et al., "Interpretable machine 
learning: definitions, methods, and applications," 
PNAS October 29, 2019 116 (44) 22071-22080. © 
National Academy of Sciences. All rights reserved. 
This content is excluded from our Creative 
Commons license. For more information, see https:// 
ocw.mit.edu/help/faq-fair-use/ 
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Image classification: explaining the diagnosis 

1. Different strategies 
1. Find input images that maximally activate 

a given class score and compare them 
according to some interpretable property 

2. Visualize how the network responds to a 
specific input image 

2. Saliency map (Simonyan,Vedaldi, Zisserman, 
2014): 
1. Class model visualization: generate an 

image that maximizes the (regularized) 
class score 

2. Image-specific class-specific saliency map: 
plots the derivative of the score function 
for a given class with respect to each pixel 

© Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Algorithm 1 Evaluating the prediction difference using conditional and multivariate sampling 
Input: classifier with outputs p(c|x), input image x of size n ⇥ n, inner patch size k, outer patch
size l > k, class of interest c, probabilistic model over patches of size l ⇥ l, number of samples S
Initialization: WE = zeros(n*n), counts = zeros(n*n) 
for every patch xw of size k ⇥ k in x do

0x = copy(x) 
sumw = 0
define patch x̂w of size l ⇥ l that contains xw

for s = 1  to S do 
0xw xw sampled from p(xw|x̂w\xw)

sumw += p(c|x0) . evaluate classifier 
end for 
p(c|x\xw) :=  sumw/S

WE[coordinates of xw] += log2(odds(c|x)) log2(odds(c|x\xw))
counts[coordinates of xw] += 1 

end for 
Output: WE / counts . point-wise division 

Zintgraf et al., "Visualizing Deep Neural Network Decisions: Prediction Difference Analysis", ICLR 2017. © 
Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Semantic segmentation: localizing structures 

1. Semantic segmentation:  assigning labels to 
individual pixels 

2. Quantification of cardiac function involves 
estimating the heart’s volume at its upper 
and lower limits 
1. This requires delineating the boundaries 

of the heart:  a segmentation task 
3. A diagnosis (classification) may also require 

limiting the field of view to a given 
structure 

4. Many radiology reports involve providing 
measurements (lengths, areas) for basic 

Lang et al., "Recommendations for cardiac chamber quantification bystructures echocardiography in adults," J Am Soc Echocardiogr. 2015 
Jan;28(1):1-39.e14. © American Society of Echocardiography. All rights 
reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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The U-Net Architecture for Semantic 
Segmentation 

1. The contraction/
downsampling layer
provides a
representation of the
context of the image

2. The expanding/
upsampling layer maps
contextual features to
the appropriate
localization

3. Skip connections
concatenate images from
the downsampling layer
to the upsampling one

copy and crop

input
image

tile

output 
segmentation 
map
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Ronneberger et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation", MICCAI 2015. © Olaf Ronneberger,
Philipp Fischer, and Thomas Brox. All rights reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Various architectures help incorporate global 
features and contextual interactions 

30
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Image registration:  aligning different images 

1. There is sometimes a need to merge
images from different modalities or from
different time points in the same study

2. In cardiac imaging this is relevant for
merging a study with poor spatial
resolution with one which is superior but
may lack functional information:  PET + CT

3. The low temporal resolution of PET also
requires averaging across many cardiac
cycles (ECG-based gating) and there may
be movement of the thorax (breathing)
during this time

© source unknown. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 31
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Image registration methods: pre- and post-CNNs 

1. Classification 

1. Intensity domain vs. frequency domain 

2. Raw intensities vs. feature-based 

3. Global (whole image) vs. local (region of 
interest) 

4. Type of transformation used to relate 
one image to the other 

5. Monomodal vs. multimodal 

2. Additional choice of similarity metric as well 
as algorithms to search parameter space for 
geometric transformation 

3. Conditional variational autoencoder have 
been explored to learn geometric 
transformations between pairs of images 

© Taylor & Francis. All rights reserved. This content is excluded from our(Krebs … Mansi, arXiv:1812.07460, 2018) 
Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 32
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A Fully Automated Echocardiogram Interpretation 
Pipeline 
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The Failure of our Current Approach to 
Cardiovascular Disease 

Risk factors 
deviate from  

optimal values 

• blood pressure 
• LDL/VLDL cholesterol 
• weight 
• blood sugar 

Time 

Hemming and
hawing regarding  
lifestyle changes 

Death 
and 

disability 

$$$ 

Treatment may be 
(grudgingly)

initiated 
• anti-hypertensives 
• cholesterol-lowering 
• anti-diabetics 

Symptoms
develop 

• dyspnea 
• anginaTherapeutic

Responsiveness 
34



What sort of solution are we looking for? 

1. Low-cost quantitative metrics that are indicative of 

disease progression and reflect the onset of these tissue-

level changes 

2. Should be specific to the disease process: 

1. expressive:  capture complex underlying processes 

(molecular, cellular, imaging …) 

2. multidimensional:   can’t readily be “gamed” 

3. Should be ameliorated with therapy (c.f. genetic risk) 
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Simple cardiac ultrasound views provide a 
quantitative metric of early disease progression 

Left ventricular mass increases 
with disease 

Left ventricular function 
diminishes with disease 

Left atrial volume increases with 
disease 

© source unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 
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A role for automated interpretation at the  
“low risk - high reward” portion of the spectrum 

Non-skilled acquisition Skilled sonographer
(primary care) 

Low cost handheld ultrasound Costly full ultrasound system 

Automated interpretation Expert cardiologist interpretation 

Early in disease course Late in disease course 

Decision support regarding initiation Difficult decisions regarding 
or intensification of therapy  surgery 

High liabilityLow liability $ 
37
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Machine learning in cardiac disease - what should 
we be focusing on? 

1. Enabling much greater volumes of data 
© American College of Cardiologists.
All rights reserved. This content is(tracking, clinical trial) by: excluded from our 
Creative Commons license. For more 
information, see1. Reducing costs of acquisition https://ocw.mit.edu/help/faq-fair-use/. 

2. Augmenting interpretation of simply 
acquired data - i.e. diagnosing abnormalities 
of relaxation without Tissue Doppler 

3. Automating interpretation to reduce costs 
2. Surveillance within a hospital system:  patient 

identification for therapies 
3. Triage: automated interpretation (lessons from 

ECGs in the ambulance/emergency room) 
4. Can we go beyond what humans can see? 

1. Quantitative tracking of intermediate 
states of disease and assessing treatment 
response 

2. Recognizing meaningful subclasses of 
© Stanford Medicine. All rights reserved. This content is excluded from our Creative 

disease that differ in prognosis and Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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A role for rapid triage:  the electrocardiogram in 
© source unknown. All rights reserved. This content is excluded myocardial infarction from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 

1. The ST-elevation myocardial infarction pattern 
in the ECG arises from complete obstruction 
of blood flow to portions of the heart 

2. In the early 2000’s it was recognized that any 
delay in angioplasty and stenting would result 
in irreversible damage to the heart 

3. The previous approach - with a cardiologist 
reviewing the ECG before any action was 
taken was replaced with a rapid triage system 
by ambulance personnel or ED physicians 

4. The cardiac catheterization team would be 
“activated” by non-cardiologists and needed 
to arrive to the hospital within 30 minutes 

5. Some subsets of these activations were false 
positives 

© Healio. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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What is in an Echo Study? 

1. Typically a collection of up to 70 videos of the heart taken over 

multiple cardiac cycles and focusing on different viewpoints 

(requiring ~45 min by a skilled sonographer) 

2. Heart can be visualized from >10 different views - though not truly 

discrete classes as sonographer can zoom and angle the probe to 

focus on structures of interest.These are typically unlabeled. 

3. Still images are typically included to enable manual measurements 

4. UCSF performs 12,000-15,000 echo studies per year; BWH 

performs 30,000-35,000 studies 

5. There are >7,000,000 echos performed annually in the Medicare 

population alone 

6. There are likely 100,000,000’s of archived echos 
40



 

 

DICOM format
images

An Automated (low-cost!) Approach to Echo 
Interpretation 

Echo Studies 
(14035) 

View View Probability Classification Quality Score (277) 

Segmentation Disease Detection: 
for 5 views HCM (495/2244) 
(791*) PAH (584/2487)

Amyloid (179/804) 

Cardiac Structure: Cardiac Function: 
Zhang ... Deo, "Fully Automated Echocardiogram Mass and Volume Ejection Fraction Interpretation in Clinical Practice: Feasibility and 
Diagnostic Accuracy," Circulation Volume 138, 
Issue 16, 16 October 2018, Pages 1623-1635.(8666) (6407)

Longitudinal Strain
(526) 

41



 

Developers
Jeffrey Zhang 

Rahul Deo 

Project Design 
Jeffrey Zhang 

Rahul Deo 
Geoff Tison 
Sanjiv Shah 

Computer Vision  
Consultants 
Laura Hallock 
Pulkit Agrawal 

EchoCV Team 

Wise Computer Vision  
Gurus 

Ruzena Bajcsy
Alyosha Efros 

Image Labeling
Rahul Deo 

Sravani Gajjala
Francesca Delling 

Statistics 
Rahul Deo 

Image Segmentation
Rahul Deo 

Sravani Gajjala
Geoff Tison 

Herceptin Data 
Acquisition
Mandar Aras 
Eugene Fan

Kirsten Fleischmann 
Michelle Melisko 

ChaRandle Jordan 
Atif Qasim 

Strain Computation
Lauren Beusslink-Nelson 

Sanjiv Shah
Atif Qasim 

Mats Lassen 

"UCSF" and "Berkeley" logos © The Regents of the University of California; "Northwestern Medicine" logo © Brigham and Women's Hospital. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

42

https://ocw.mit.edu/help/faq-fair-use/


DICOM format
images

An Automated (low-cost!) Approach to Echo 
Interpretation 

Echo Studies 
(14035) 

View View Probability Classification Quality Score (277) 

Segmentation Disease Detection: 
for 5 views HCM (495/2244) 
(791*) PAH (584/2487)

Amyloid (179/804) 

Cardiac Structure: Cardiac Function: 
Mass and Volume Ejection Fraction 

(8666) (6407)
Longitudinal Strain

(526) 
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View Classification -
Someone Already Got To It Before Us 

X. Gao et al., "A fused deep learning architecture for viewpoint classification of
echocardiography," Information Fusion Volume 36, July 2017, Pages 103-113. 
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View Classification - Our Take 
Prediction of echo views for individual images 
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Predictions 
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DICOM format
images

An Automated (low-cost!) Approach to Echo 
Interpretation 

Echo Studies 
(14035) 

View View Probability Classification Quality Score (277) 

Segmentation Disease Detection: 
for 5 views HCM (495/2244) 
(791*) PAH (584/2487)

Amyloid (179/804) 

Cardiac Structure: Cardiac Function: 
Mass and Volume Ejection Fraction 

(8666) (6407)
Longitudinal Strain

(526) 
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Segmentation using Convolutional Neural
Networks 

Image CNNGround 
Truth 

Image CNNGround 
Truth 

For all views, only 100-200 manually traced images were used for training 
We segment every frame of every video 

Zhang ... Deo, "Fully Automated Echocardiogram Interpretation in Clinical Practice," Circulation. 2018;138:1623–1635. 47
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Deriving “Real World” Measurements:  
Comparisons to Thousands of Studies from the 
UCSF Clinical Echo Laboratory 

Metric Number of Echo 
Studies Used for 

Comparison 

Median Value (IQR) Absolute Deviation - % of Manual 
(Automated vs. Manual Measurement) 

50 75 95 

Left atrial volume 4800 52.6 (40.0-71.0) 16.1 29.3 66.2 

Left ventricular diastolic volume 8457 92.1 (71.8-119.1) 17.2 30.5 68.0 

Left ventricular systolic volume 8427 33.2 (24.1-46.8) 26 47 108 

Left ventricular mass 5952 148.0 (117.3-159.9) 15.1 27.6 61 

Left ventricular ejection fraction 6407 64.8 (58.3-59.41) 9.7 17.2 39.9 

Global longitudinal strain 418 19.0 (17.0-21.0) 7.5 13.6 30.8 

Global longitudinal strain (Johns 
Hopkins PKD study) 

110 18.0 (16.0-20.0) 9.0 17.1 39.4 

We can make all of the common measurements for B-mode echo. 
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Deriving “Real World” Measurements 
A Left ventricular diastolic volume B Left atrial volume 
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Assessing Cardiac Function 
A Left ventricular ejection fraction B Global longitudinal strain 
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Are clinicians really a gold standard? 

1. A typical echocardiogram reader will manually trace the heart in 4-6 

“representative frames” and that will be the gold standard 

2. There is wide variability in measurement values from physician to 

physician - up to 8-9% for the ejection fraction, which has a normal 

value of 60% 

3. How do we show an improvement? 

1. Compare to an average of multiple readers 

2. Compare to a gold-standard imaging system (e.g. MRI) 

3. Demonstrate utility in outcomes 
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Internal Measures of Consistency 

Comparison N Correlation – 
Manual vs. 

Manual 
(p-value) 

Correlation – 
Automated vs. 

Automated 
(p-value) 

Left atrial volume vs. left ventricular mass 4012 0.54 (<2e-16) 0.56 (<2e-16) 

Left ventricular mass vs. left ventricular diastolic volume 5874 0.62 (<2e-16) 0.61 (<2e-16) 

Left ventricular mass vs. left ventricular systolic volume 5856 0.58 (<2e-16) 0.55 (<2e-16) 

Left atrial volume vs. left ventricular diastolic volume 4748 0.48 (<2e-16) 0.56 (<2e-16) 

Left atrial volume vs. left ventricular systolic volume 4738 0.49 (<2e-16) 0.46 (<2e-16) 

Left atrial volume vs. left ejection fraction 4720 -0.22 (<2e-16) -0.23 (<2e-16) 

Left ventricular mass vs. global longitudinal strain 243 -0.16 (0.01) -0.27 (<2e-16) 

Left ventricular mass vs. left ejection fraction 5123 -0.28 (<2e-16) -0.28 (<2e-16) 

Left ventricular diastolic volume vs. global longitudinal strain 326 -0.15 (0.006) -0.17 (0.002) 

Left ventricular systolic volume vs. global longitudinal strain 326 -0.29 (<2e-16) -0.27 (<2e-16) 

Left ventricular ejection fraction vs. global longitudinal strain 251 0.37 (<2e-16) 0.32 (<2e-16) 
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Longitudinal Strain in Longitudinal Studies 
Tracking Patients on Herception Chemotherapy 

Zhang ..... Deo, "Fully Automated Echocardiogram Interpretation in Clinical Practice," Circulation. 2018; 138: 1623–1635. 

A vision of low cost serial monitoring of patients at risk of cardiac 
dysfunction:  hypertension, obesity, diabetes 
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Automated Disease Detection - What’s the Point? 

1. Several rare diseases would benefit from referral to a 

cardiologist or specialty center 

2. These diagnoses tend to be missed at centers that see them 

infrequently 

3. We hypothesized that we could implement “disease detection 

modules” based on these same simple views 

4. This would again be themed as “decision support” - not 

definitive diagnoses 

54



 

A Model for Hypertrophic Cardiomyopathy 
HCM detection model (phased)

A4c + PLAX 

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/. 
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A Model for Cardiac Amyloidosis 

• Can be inherited in families 

• Can result in unstable heart rhythms, heart 

failure, and stroke 

AUROC = 0.87 
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Images © source unknown. All rights reserved. This
content is excluded from our Creative CommonsA Model for Mitral Valve Prolapse license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/. 

• A disease characterized by abnormal MVP detection model (phased)
A4c + PLAXmyxomatous thickening of the valve 

leaflets 

• Seen in 1% of the population 

• Can progress to severe valve disease 
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What Next - Clinical Deployment!!! 

1. UCSF has filed provisional patent for our system

2. Code and weights are freely available for academic/nonprofit 

use on Bitbucket: https://bitbucket.org/rahuldeo/echocv

3. We don’t have FDA approval as a diagnostic - but proof-of-

concept studies are needed to test the value of integrating 

automation into the clinical workflow

4. Enabling National and Global Clinical Deployment

1. Brandon Fornwalt: Geisinger Health System

2. Patrick Gladding: The University of Auckland, NZ
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Musings about the future 
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Some predictions for the future of cardiac imaging: 
following the path of ECG interpretation 

1. Routine measurements will be made in an automated way -
with a visual check of segmentation quality 

2. Some automated diagnoses may happen at point-of-care: 
assessment of heart function, dangerous accumulation of 
fluid around the heart 

3. Until image acquisition is facilitated, the benefits of 
automated interpretation will be muted 
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Where there is greater uncertainty … 

1. Ideally, we should be using automated interpretation to elevate 
medicine beyond the current practice - but that requires much 
larger data sets and imaging more often (i.e. time course) than 
what is currently performed (and reimbursed) 

2. Pharmaceutical companies have motivation to perform high 
frequency serial imaging to assess whether there are any benefits 
to medications in a shortened Phase II trial - accurate scalable 
quantification will be needed 

3. Surveillance of daily studies may be useful to enable identification 
of individuals who may be eligible for clinical trials or newly 
approved therapies (e.g. cardiac amyloidosis) 
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Subclassification, risk models, … and the challenge 
of demonstrating utility 

1. There is no question most disease classifications are crude … 
and finer distinctions can be made between disease states 

2. There is also no question that survival models are crude, and 
better predictive models should be possible with imaging data 
and emerging algorithms 

3. Unfortunately, physicians are only interested in classifications 
or risk models that will change practice … and require 
evidence to justify this 

4. So until we have more data, we are left with the status quo 
and a bunch of research manuscripts 
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What about the biology? 
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What is missing in medicine? 

1. Low-cost quantitative metrics that are indicative of 

disease progression and reflect the onset of these tissue-

level changes 

2. Should be specific to the disease process: 

1. expressive:  capture complex underlying biological 

processes 

2. multidimensional:   can’t readily be “gamed” 

3. Should be ameliorated with therapy (c.f. genetic risk) 

64Logo © American Heart Association. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Immediate challenges 

1. Inaccessible biology: the tissue of interest in CHD is 

not accessible … how then to build biological assays 

2. Expensive:  most detailed biological measurements are 

costly (c.f. imaging, proteomics, DNA sequencing) 

3. Problematic to train: 

• sample size:  models that quantify complex biological 
processes will need to be high-dimensional … but 
these will require very large sample size to train and 
validate 

• time:  CHD develops slowly over time but a new 
biological assay requires prospective enrollment 

65



  

Expanding phenotypic space 

1. Current clinical data sets lack the scale and expressivity needed to 

reflect underlying biological processes 

2. Discoveries from UK Biobank, Partners Biobank, Vanderbilt, Geisinger, 

etc., are all limited by the underlying low dimensionality of phenotypic 

information - and that will not be solved by sample size (more of the 

same) 

3. But these studies were exorbitant and have taken decades to accrue 

the current sample size… how do we improve on this? 

4. We need a data type that has the dimensionality to capture biological 

heterogeneity and complexity and yet can still be collected in a very 

scaleable manner (cf. representation learning needs) 

5. It became very clear we need to stay clear of sequencing technologies 

and costly medical imaging 
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A focus on individual circulating blood 
cells 

1. Causally implicated in CHD pathogenesis 

1. Involvement of neutrophils, monocytes, and lymphocytes in disease 

pathogenesis (plaque pathology; plaque pathology); genetic models in mice 

2. CANTOS trial 

3. Accelerated atherosclerosis in autoimmune disorders 

4. Association of clonal hematopoeisis and early myocardial infarction 

2. Accessible: accessible in a blood draw 

3. Precedence for utility:  Existing predictive models exist for CAD using WBC/RBC 

characteristics 

4. Express many of the proteins implicated by genetic analysis in atherosclerosis: e.g. 

LDLR, LPL, FADS1/2 

5. Reflect many pathways found in diverse cell types:  autophagy, phagocytosis, free 

radical dissipation 
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Cell morphology rather than genomics 

1. Takes advantage of computer vision advances in 

characterizing subtle distinctions between cell types 

and states at low cost 

2. Can analyze tens of thousands of individuals cells 

per participant 

3. Fluorescent dyes permit characterization of 

organelles (mitochondria, ER, Golgi), cytoskeleton 

(actin), nucleic acid (DNA, RNA) 

4. Can be connected to gene expression to clarify 

underlying functional abnormalities 

Images © sources unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Readily amenable to perturbations 

1. Expressivity can be augmented by adding 

perturbational reagents to whole blood and 

repeating the cell staining protocol 

2. Examples: LPS, cholesterol crystals, saturated fatty 

acids 

3. Whole blood environment permits cross talk 

between cells: e.g. vital netosis triggered by LPS-

platelet interaction 

4. Final readout — high content imaging — is 

inexpensive and directly comparable to baseline 

state 

Vial, molecule, cell, and medical equipment images © source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Cholesterol 
crystal image courtesy of Ed Uthman on Flickr. License: CC BY. Microscope slide image in the public domain,
courtesy of Steven Glenn. 69
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Recruitment workflow – 1000-1200 patients 
per month (12,000-15,000 per year) 

Vial image © source
unknown. All rights
reserved. This content 
is excluded from our 
Creative Commons 
license. For more 
information, see https://
ocw.mit.edu/help/faq-
fair-use/. 

Cardiology clinic General medicine Primary care
Primary assays:  low cost, Secondary assays: costly, less 
reproducible, expressive, rapid, robust, limited expressivity, non-
responsive to therapy, interpretable responsive, non-biological 

Somatic sequencing
(CHIP) 

GWAS (GRS) 

Novel Devices PETECG 

Single cell RNA-Seq WGS 

Vial, molecule, cell, and medical equipment images © source unknown. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/. Cholesterol crystal image courtesy of Ed Uthman on
Flickr. License: CC BY. Microscope slide image in the public domain, courtesy of Steven
Glenn. 
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Scaling up to incorporate longitudinal 
data: tapping into the pathology lab 

Sysmex CellaVision 

1. Data has been collected since 
2015 

2. >3.5 million data records with 
1800 added a day 

3. We connect cellular data to full 
medical data via API 

4. Digitized slides from 100,000 
patients - 13 million images 

5. Prospectively doing this for all 
acute MI patients 

3.5M FCS files from the XE-5000 

740K raw files from the XN-9000 
+ 1800/day 

Abbot Sapphire 

170K+ FCS files 

160K+ WBC TYP files 

13M images 
18% Lymphocytes (in active DB) 

100K smears + 135/day 

Siemens Advia 

65K+ FCS files 

7.7M raw files 

CellaVision database 
File Share 

database Aggregation new 
Server snapshot snapshot Server data 

Currently a single 
server/database 
supporting three 
CellaVision 

1K+ nightly 
snapshots from 
11/2015 to present 

Custom Python 
script copies new 
MimerSQL rows to 
MySQL 

~13M images 

~100K smears 

instruments ~8 TB 575 GB 
~9hrs per backup 

Accumulated 
Database 
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Summary of our approach 
1. A permissive recruitment scheme to enable rapid 

accrual of tens of thousands of patients per year all 

with expressive phenotyping and full medical records 

2. Use of cell morphology/cell counter data to massively 

expand phenotypic space at low cost using 

perturbations and diverse readouts 

3. Overlapping of multiple phenotypic scales in different 

cohorts to convert costly, tissue-localized phenotypes 

(e.g. PET, CHIP sequencing) into lower cost (TTE, cell 

imaging) models 

4. API-based cohort identification to allow rapid 

identification of patients of interest 

5. Automated curation of the medical record into a 

vehicle for machine learning and causal inference 
W
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The macro- and microcirculation 
Image from Taqueti and DeCarli, "Coronary Microvascular 
Disease Pathogenic Mechanisms and Therapeutic Options," 
Journal of the American College of Cardiology Volume 72, Issue 
21, 27 November 2018, Pages 2625-2641. Courtesy of Elsevier, 
Inc., https://www.sciencedirect.com. Used with permission. 
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