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Lecture 5: Risk stratification (continued) 
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Outline for today’s class 

1. Risk	 stratification (continued) 
– Deriving labels 
– Evaluation 

– Subtleties with ML-based	 risk stratification 

2. Survival modeling 
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Where do the labels come from? 

Typical pipeline: 
1. Manually label several patients’	 data by “chart 

review” 
2. A) Come up with a simple rule to automatically

derive label for all patients,	 or 

B) Use machine learning to get the labels
themselves 
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Step 1: 
Visualization of individual patient data	 is 

an important part of chart review 

Demographic information 
Patient events list 

Events, as they occur for the first time in patient history 

https://github.com/nyuvis/patient-viz 
© Krause et al. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Figure 1: Algorithm for identifying T2DM cases in the EMR. 

Step 2: 
Example of a 
rule-based 
phenotype 

5
© Pacheco and Thompson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Outline for today’s class 

1. Risk	 stratification (continued) 
– Deriving labels 
– Evaluation 

– Subtleties with ML-based	 risk stratification 

2. Survival modeling 
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Receiver-operator characteristic curve 

Full model 
Traditional risk factors 

True 
positive 
rate 

Want to be here Obtained by 
varying 
prediction	 
threshold 

Diabetes 
1-year gap False positive rate 7



	 	

	
	 	

	 	

	
	

	
	 	

	 	

	
	 	

	
	

	 	 	
	

	 	
	 	 	

	

Receiver-operator characteristic curve 

True 
positive 
rate 

Diabetes 
1-year gap 

Full model 
Traditional risk factors 

Area 
under the 
ROC curve 
(AUC) 

False positive rate 

AUC = 
Probability that 
algorithm	 ranks 
a	 positive 
patient over a 
negative patient 

Invariant to 
amount of class 
imbalance 
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fraction of patients the 
model predicts to have this 

probability of infection 

Model 

	 	 	

	
	 	 	

Calibration (note: different dataset) 

Actual 
Probability 

Predicting 
infection in the ER 
Courtesy of Horng et al. Used under CC BY. 
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Outline for today’s class 

1. Risk	 stratification (continued) 
– Deriving labels 
– Evaluation 

– Subtleties with ML-based	 risk stratification 

2. Survival modeling 
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Non-stationarity: 
Diabetes Onset After 2009 

→ Automatically derived	 labels may change meaning 

[Geiss LS, Wang J, Cheng YJ, et al. Prevalence and	 Incidence Trends for Diagnosed	 
Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA,	 2014.] 12

© American Medical Association. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Non-stationarity: 
Top 100	 lab measurements over time 

La
bs

 

Time (in months, from 1/2005 up to	 1/2014) 

→ Significance of	 features may change over time
© Narges Razavian. All rights reserved. This content is excluded from our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/ 

[Figure credit: Narges Razavian] 13
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Non-stationarity: 
ICD-9	 to ICD-10	 shift 

Co
un

t o
f d

ia
gn
os
is 
co
de
s 

2000 2005 2010 2015 

→ Significance of	 features may change over time
© Mike Oberst. All rights reserved. This content is excluded from our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/
[Figure credit: Mike Oberst] 14

ICD-10 

ICD-9 
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Re-thinking evaluation in the face of 
non-stationarity 

• How was our diabetes model evaluation flawed? 

• Good practice: use	 test data from a future	 year: 
Test 

Train 

Validate 

[Figure credit: 
Helen Zhou] 

© Helen Zhou. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Intervention-tainted outcomes 
• Example from today’s readings: 

– Patients with pneumoniawho have a history of 
asthma	 have lower risk of dying from pneumonia 

– Thus, we learn: HasAsthma(x)	 => LowerRisk(x) 
• What’s wrong with the learned model? 

– Risk stratification drives interventions 
– If low risk, might not admit to ICU.	 But this was 
preciselywhat preventedpatients from dying! 

[Caruana et al., Intelligible	 Models for Healthcare: Predicting Pneumonia Risk and Hospital 30-
day Readmission. KDD 2015.] 16



	

	

	 	 	 	 	 	 	

	 	 	

	 	 	 	
	 	 	 	 	 	

	 	 	 	

Intervention-tainted outcomes 
• Formally,	 this is what’s happening: 

� 
� 

ED triage Death Time 

“Mary” 

Treatment 

A	 long survival time may be because of treatment! 

• How do we	 address this problem? 

• First and foremost,	must recognize it is happening 
– interpretable models help with this 
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Intervention-tainted outcomes 
• Hacks: 

1. Modify model, e.g. by removing the 
HasAsthma(x)	 => LowerRisk(x) rule 
I	 do not expect this to work with high-
dimensionaldata 

2. Re-define outcome by finding a pre-treatment
surrogate (e.g., lactate levels) 

3. Consider treated patients as right-censored by 
treatment 

Example: 
Henry,	 Hager,	 Pronovost,	 Saria. A targeted real-time early warning
score (TREWScore)	 for septic shock. Science Translation Medicine,	 2015 
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Intervention-tainted outcomes 
• The rigorous way to address this problem is through 
the language of causality: 

Patient, � Intervention, � 

(everything we 
know at triage) 

(admit to the ICU?) 

Outcome, � (death) 

Will admission to ICU lower likelihood of death	 for patient? 

? 

• We return to this in Lecture 14 
19



	 	 	 	 	 	
	

	
	 	 	

	
	 	

	 	 	

	 	
	 	

	
	 	 	

No	 big wins from deep models on 
structured data/text 

Rajkomar et al.,	 
Scalable and accurate 
deep	 learning with	 
electronic health 
records. Nature Digital 
Medicine,	 2018 

Recurrent neural 
network & attention-
based	 models trained	 
on 200K hospitalized 
patients 

Courtesy of Rajkomar et al. Used under CC BY. 
20
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Inpatient Mortality, (95% CI)
Deep learning 24 hours after admission 0.95(0.94-0.96) 0.93(0.92-0.94)
Full feature enhanced baseline at 24 hours after admission 0.93 (0.92-0.95) 0.91 (0.89-0.92)
Full feature simple baseline at 24 hours after admission 0.93 (0.91-0.94) 0.90 (0.88-0.92)

	 	 	 	 	 	
	

	
	
	 	

No	 big wins from deep models on 
structured data/text 

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

Hospital A Hospital B
AUROC1

Comparison 
to Razavian 

Baseline (aEWS2) at 24 hours after admission 0.85 (0.81-0.89) 0.86 (0.83-0.88)
et al. ‘15 

30-day Readmission, AUROC (95% CI)
Deep learning at discharge 0.77(0.75-0.78) 0.76(0.75-0.77)
Full feature enhanced baseline at discharge 0.75 (0.73-0.76) 0.75 (0.74-0.76)
Full feature simple baseline at discharge
Baseline (mHOSPITAL3) at discharge

0.74 (0.73-0.76)
0.70 (0.68-0.72)

0.73 (0.72-0.74)
0.68 (0.67-0.69)

Length of Stay at least 7 days AUROC (95% CI)
Deep learning 24 hours after admission
Full feature enhanced baseline at 24 hours after admission
Full feature simple baseline at 24 hours after admission
Baseline (mLiu4) at 24 hours after admission

0.86(0.86-0.87)
0.85 (0.84-0.85)
0.83 (0.82-0.84)
0.76 (0.75-0.77)

0.85(0.85-0.86)
0.83 (0.83-0.84)
0.81 (0.80-0.82)
0.74 (0.73-0.75)

Courtesy of Rajkomar et al. Used under CC BY. 
21
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No	 big wins from deep models on 
structured data/text 

Courtesy of Rajkomar et al. Used under CC BY. 

[Rajkomar et	al.	‘18	electronic	supplementary	material:
ttps://static-content.springh er.com/esm/art%3A10.1038%2Fs41746-018-0029-
/MediaObjects/411 746_2018_29_MOESM1_ESM.pdf]

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

Hospital A Hospital B
Inpatient Mortality, AUROC1(95% CI)
Deep learning 24 hours after admission (0.94-0.960.95( -0.94(0.920.93(
Full feature enhanced baseline at 24 hours after admission 0.93 (0.92-0.95) 0.91 -0.92(0.89(
Full feature simple baseline at 24 hours after admission 0.93 (0.91-0.94( 0.90 (0.88( -0.92
Baseline (aEWS ) at 24 hours after admission 0.85 (0.81( -0.89 0.86 -0.88(0.83(
30-day Readmission, AUROC (95% CI)
Deep learning at discharge 0.77((0.75-0.78 (0.750.76( -0.77
Full feature enhanced baseline at discharge 0.75 (0.73-0.76( 0.75 ((0.74-0.76
Full feature simple baseline at discharge 0.74 -0.76((0.73 0.73 -0.74(0.72(
Baseline (mHOSPITAL ) at discharge 0.70 (0.68( -0.72 0.68 (0.67-0.69(
Length of Stay at least 7 days AUROC (95% CI)
Deep learning 24 hours after admission -0.870.86((0.86 -0.86(0.850.85(
Full feature enhanced baseline at 24 hours after admission 0.85 (0.84-0.85) 0.83 ( -0.84(0.83

0.83 (0.82-0.84( 0.81 -0.82(0.80(Full feature simple baseline at 24 hours after admission
Baseline (mLiu4) at 24 hours after admission 0.76 -0.77((0.75 0.74 ((0.73-0.75
1 Area under the receiver operator curve

Comparison	
to	Razavian
et	al.	‘15

Keep2	in	mind:
Small	wins	with	deep	models	may	disappear	
altogether	with	dataset	shift	or	non-stationarity	
(Jung	&	S3hah,	JBI	‘15)

https://www.nature.com/articles/s41746-018-0029-1#Ack1
https://0.67-0.69
https://0.68-0.72
https://0.76(0.75-0.77
https://0.83-0.88
https://0.81-0.89


	 	 	 	 	 	
	 	

	 	 	 	 	 	
	 	

	 	 	 	 	 	
	

	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	

No	 big wins from deep models on 
structured data/text – why? 

• Sequential data in medicine is very different 
from language modeling 
– Many time scales, significant missing data, and 
multi-variate observations 

– Likely	 do exist predictivenonlinear interactions,but 
subtle 

– Not enough data to naively deal with the	 above	 two 

• Medical community has already come up with 
some very good features 

23



	 	 	

	
	

	 	 	
	

Outline for today’s class 

1. Risk	 stratification (continued) 
– Deriving labels 
– Evaluation 

– Subtleties with ML-based	 risk stratification 

2. Survival modeling 
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Survival modeling 

• We focus on right-censored data:
Event occurrence 
e.g., death, divorce, college	 graduation

Censoring 

T 

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017] 
© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Survival modeling 

• Why not use classification, as before?
– Less data for training (due to exclusions)
– Pessimistic estimates due to choice of window

• What about regression, e.g. minimizing mean-
squared error?
– T	 is non-negative,may want long tails
– If we just naively removed censoredevents,we
would be introducing bias

26
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Notation and formalization 
• Data are (x,	 T,	b)=(features,	time,	censoring),	where
b=0,1 denotes whether time is of censoring or event
occurrence

• Let f(t) = P(t) be the probability	 of death at time t
• Survival function: the probability of an individual
surviving beyond time t,

∞
S(t) = P(T > t) = f (x)dx .

t 

[Ha, Jeong,	 Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017] 
27



	 	

	 	 	 	 	 	 	 	 	 	

Notation and formalization 

Time in years

Fig. 2: Relationship among different entities f(t), F (t) and S(t). 

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017] 
© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Kaplan-Meier estimator 

• Example of a non-parametric method; good	 for 
unconditionaldensity estimation 

x=0 x=1 Observed event times 
y(1) < y(2) < · · ·  < y(D) 

Survival d(k) =	 #	 events at this time	 
probability, 

S(t) 
n(k) =	 #	 of individuals alive	 

and uncensored 

Time t 

SK −M (t) = 
k:y(k)≤t 

d(k)1 − 
n(k) 

[Figure credit: Rebecca Peyser] 
© Rebecca Peyser. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Hazard rate λ(t)

λ

λφtφ−1

f (t)/S(t)

(λφtφ−1)/(1+ λtφ)

f (t)/S(t)

λeφt

Maximum likelihood estimation 

• Commonly parametric densities for f(t): 
Table 2.1 Useful parametric distributions for survival analysis 
Distribution Survival function 

S(t) 
Density function f (t) 

Exponential (λ > 0) exp(−λt) λ exp(−λt) 

Weibull (λ, φ > 0) exp(−λtφ) λφtφ−1 exp(−λtφ) 

Log-normal 
(σ > 0, µ ∈ R) 

(parameters 
can be a 

1 − {(lnt − µ)/σ} ϕ{(lnt − µ)/σ}(σt)−1 

Log-logistic 
(λ > 0, φ > 0) 

function of	 x) 1/(1 + λtφ) (λφtφ−1)/(1 + λtφ)2 

Gamma (λ, φ > 0) 1 − I (λt, φ) {λφ/ (φ)}tφ−1 exp(−λt) 

Gompertz 
(λ, φ > 0) 

exp{ λ (1 − eφt )}φ λeφt exp{ λ (1 − eφt )}φ 

[Ha, Jeong,	 Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017] 
© Springer. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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�

Z 1

t
p✓ (a |x)da

Maximum likelihood estimation 

• Two kinds of observations: censored and uncensored 

Uncensored likelihood 

p✓ (T = t | x) = f(t) 

Censored likelihood 

censoredp (t | x) =  p✓ (T > t | x) =  S(t)✓ 

• Putting the two together, we get: 
nX 

censoredbi log p (t | x) + (1 bi) log p✓ (t | x)✓ 
i=1 

Optimize via gradient or stochastic gradient ascent! 
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i

=1

Evaluation for survival modeling 

• Concordance-index (also called C-statistic): look at
model’s ability to predict	 relative survival times: 

X X 
ĉ = 

1 
I[S(ŷ

j |Xj ) > S(ŷ
i

|X
i

)]
num 

i:�bi = 0j:y
i

<y

j 

• 

Black = uncensored 
Red = censored 

• Equivalent to AUC for binary variables and no censoring 

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017] 
© ACM. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

Illustration – blue lines denote pairwise comparisons: 

1y 2y 3y 4y 5y
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Final thoughts on survival modeling 

• Could also evaluate: 
– Mean-squared error for uncensored individuals 
– Held-out (censored) likelihood 

– Derive binary classifier from learnedmodel and 
check calibration 

• Partial likelihood estimators (e.g. for cox-
proportional hazards models) can	 be much 
more data efficient 
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