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Outline for today’s class

1. Risk stratification (continued)
— Deriving labels
— Evaluation
— Subtleties with ML-based risk stratification

2. Survival modeling



Where do the labels come from?

Diabetes Onset

T T+W

Patient A +

Typical pipeline:
1. Manually label several patients’ data by “chart
review”

2. A) Come up with a simple rule to automatically
derive label for all patients, or

B) Use machine learning to get the labels
themselves



Step 1:
Visualization of individual patient data is
an important part of chart review
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https://github.com/nyuvis/patient-viz
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Figure 1: Algorithm for identifying T2DM cases in the EMR.
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Outline for today’s class

1. Risk stratification (continued)
— Deriving labels
— Evaluation
— Subtleties with ML-based risk stratification

2. Survival modeling
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Receiver-operator characteristic curve
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Receiver-operator characteristic curve
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Outline for today’s class

1. Risk stratification (continued)
— Deriving labels

— Evaluation
— Subtleties with ML-based risk stratification

2. Survival modeling



Non-stationarity:
Diabetes Onset After 2009
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—> Automatically derived labels may change meaning

[Geiss LS, Wang J, Cheng Y], et al. Prevalence and Incidence Trends for Diagnosed
Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012.JAMA, 2014.]
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Non-stationarity:
'op 100 lab measurements over time
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— Significance of features may change overtime
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Non-stationarity:
ICD-9 to ICD-10 shift
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Re-thinking evaluation in the face of
non-stationarity

e How was our diabetes model evaluation flawed?
* Good practice: use test data from a future year:

Test
y Validate 4
36,655 distinct 52,584 micro samples 22,129 micro
. patient IDs y o _ 13,168 (~7%)
sphE by / (~20%) 26,895 (~15%) distinct patient IDs g
patients; patient IDs
no overlap
bEEWEEﬂ thESE / Tra i n y
Erospaict 88,310
patient IDs ; 1
208,752 micro samples* micro sampies
\ 146,434 distinct 52,600
patient IDs 107,414 (~59%) distinct patient IDs (~£9%)
[~ 56%) distinct
* train/development set patient IDs
[Figure credit: .
Helen Zhoul] split by — 2007 - 2013 2014 - 2016
date range
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Intervention-tainted outcomes

 Example from today’s readings:

— Patients with pneumonia who have a history of
asthma have lower risk of dying from pneumonia

— Thus, we learn: HasAsthma(x) => LowerRisk(x)

* What’s wrong with the learned model?

— Risk stratification drives interventions

— If low risk, might not admit to ICU. But this was
precisely what prevented patients from dying!

[Caruana et al., Intelligible Models for Healthcare: Predicting Pneumonia Risk and Hospital 30-
day Readmission. KDD 2015.]



Intervention-tainted outcomes

* Formally, this is what’s happening:

Y
ED trlage Treatment Death> Time
‘Mary

A long survival time may be because of treatment!

e How do we address this problem?

* First and foremost, must recognize it is happening
— interpretable models help with this



Intervention-tainted outcomes

e Hacks:

1. Modify model, e.g. by removingthe
HasAsthma(x) => LowerRisk(x) rule
| do not expect this to work with high-
dimensional data

2. Re-define outcome by finding a pre-treatment
surrogate (e.g., lactate levels)

3. Considertreated patients as right-censored by
treatment

Example:
Henry, Hager, Pronovost, Saria. A targeted real-time early warning
score (TREWScore) for septic shock. Science Translation Medicine, 2015

18



Intervention-tainted outcomes

* Therigorous way to address this problemis through
the language of causality:

Patient, X Intervention, T

(everything we
know at triage)

(admit to the ICU?)
)

Outcome, Y (death)

Will admission to ICU lower likelihood of death for patient?

e We return to thisin Lecture 14



No big wins from deep models on

structured data/text
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https://www.nature.com/articles/s41746-018-0029-1

No big wins from deep models on
structured data/text

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

Hospital A Hospital B

Inpatient Mortality, AUROC(95% CI)

( ) 0.93(0.92-0.94) | COmparison
Full feature enhanced baseline at 24 hours after admission  0.93(0.92-0.95)  0.91(0.89-0.92) | to Razavian
Full feature simple baseline at 24 hours after admission 0.93(0.91-0.94)  0.90(0.88-0.92) et gl. “15

Baseline (aEWS?) at 24 hours after admission 0.85(0.81-0.89) 0.86(0.83-0.88)

Deep learning 24 hours after admission 0.95(0.94-0.96

30-day Readmission, AUROC (95% CI)

Deep learning at discharge 0.77(0.75-0.78)  0.76(0.75-0.77)
Full feature enhanced baseline at discharge 0.75(0.73-0.76)  0.75(0.74-0.76)
Full feature simple baseline at discharge 0.74(0.73-0.76)  0.73(0.72-0.74)
Baseline (mHOSPITAL?) at discharge 0.70(0.68-0.72)  0.68(0.67-0.69)

Length of Stay at least 7 days AUROC (95% CI)

Deep learning 24 hours after admission 0.86(0.86-0.87) 0.85(0.85-0.86)
Full feature enhanced baseline at 24 hours after admission  0.85(0.84-0.85)  0.83(0.83-0.84)
( ) )
( ) )

Full feature simple baseline at 24 hours after admission 0.83(0.82-0.84)  0.81(0.80-0.82
Baseline (mLiu?) at 24 hours after admission 0.76 (0.75-0.77)  0.74(0.73-0.75

Courtesy of Rajkomar et al. Used under CC BY.
21


https://www.nature.com/articles/s41746-018-0029-1#Ack1

No big wins from deep models on
structured data/text

Keep in mind:

Small wins with deep models may disappear
altogether with dataset shift or non-stationarity
(Jung & Shah, JBI ‘15)

Courtesy of Rajkomar et al. Used under CC BY.
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No big wins from deep models on
structured data/text — why?

* Sequential data in medicine is very different
from language modeling

— Many time scales, significant missing data, and
multi-variate observations

— Likely do exist predictive nonlinear interactions, but
subtle

— Not enough data to naively deal with the above two

* Medical community has already come up with
some very good features



Outline for today’s class

1. Risk stratification (continued)
— Deriving labels
— Evaluation
— Subtleties with ML-based risk stratification

2. Survival modeling



Survival modeling

 We focus on right-censored data:

Event occurrence

[ / e.g., death, divorce, college graduation
S6 X

S5 X
W
E 4 X
'S S3 e <4—Censoring
-
52 »

s1 &

>

6 1 2 3 4 5 6 7 & 9 10 11 12
Time T

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]
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Survival modeling

 Why not use classification, as before?
— Less data for training (due to exclusions)
— Pessimistic estimates due to choice of window
 What about regression, e.g. minimizing mean-
squared error?

— T is non-negative, may want long tails

— If we just naively removed censored events, we
would be introducing bias

26



Notation and formalization

e Dataare (x, T, b)=(features, time, censoring), where
b=0,1 denotes whether time is of censoring or event

occurrence
e Let f(t) = P(t) be the probability of death at time t

e Survival function:the probability of an individual
surviving beyond time t,

S(t)=P(T >1t) = N f(x)dx

5

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Notation and formalization

A
F(t) or proportion dead
0.8 -
f{(t) or death density
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Fig. 2: Relationship among different entities f(¢), F'(t) and S(t).

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]
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Kaplan-Meier estimator

 Example of a non-parametric method; good for
unconditional density estimation

x=0 x=1 Observed event times
) Y1) < V@) < < YD)
Survival d) = # events at this time
probability, **| ng) =# of individuals alive
S(t)
and uncensored
o0 .
Sk-—m(t) = — %
. (k)
k:
Time t Yozt

[Figure credit: Rebecca Peyser]
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Maximum likelihood estimation

« Commonly parametric densities for f(t):

Table 2.1 Useful parametric distributions for survival analysis

Distribution Survival function Density function f(¢)
S(1)

Exponential (A > 0) exp(—At) Aexp(—Ar)

Weibull (A, ¢ > 0) exp(—)\t(b) A¢t¢_1 exp(—At¢)

Log-normal (parameters I — {(nt—pw)/o} | p{(Int — ,u)/a}(at)_1

(0>0,p€R) can be a

Log-logistic function of x) 1/(1 + At?) (Aot?™h) /(1 + At?)?

(A>0,¢0>0)

Gamma (\, ¢ > 0) 1 — I\, @) N/ ()P Lexp(—Ar)

Gompertz exp{%(l — %)) Ae? exp{%(l — e?))

(A, ¢ > 0)

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]
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Maximum likelihood estimation

e Two kinds of observations: censored and uncensored

Uncensored likelihood

pe(T=t|x) = f(1)

Censored likelihood
p(éensored(t | X) :pe(T >t | X) — S(t)

e Putting the two together, we get:

> bilogp&red(tx) + (1 b;)logpe(t|x)
=1

Optimize via gradient or stochastic gradient ascent!

31



Evaluation for survival modeling

* Concordance-index (also called C-statistic): look at
model’s ability to predict relative survival times:

numz Z I1S(5;1X;5) > S(4:]1X:)]

J:Yi <yj
* lllustration —blue lines denote pairwise comparisons:

N .y2 .)’3

V4 Ys
- ®
Black = uncensored

Red = censored

 Equivalentto AUCfor binary variables and no censoring

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]
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Final thoughts on survival modeling

* Could also evaluate:
— Mean-squared error for uncensored individuals
— Held-out (censored) likelihood

— Derive binary classifier from learned model and
check calibration

e Partial likelihood estimators (e.g. for cox-
proportional hazards models) can be much
more data efficient
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