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Objectives

* Define dynamic treatment strategies

* Describe when g-methods are needed

* Review an application of the parametric g-formula to
cancer research
» Causal inference perspective

* Discuss the Al Clinician
* Reinforcement learning perspective
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WHAT ARE DYNAMIC TREATMENT STRATEGIES?
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Treatment strategies

Point interventions

Sustained strategies

Static Dynamic
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1. Initiate treatment at
baseline

2. Do not initiate
treatment at
baseline

2. Do no

1. Initiate treatment at
baseline and continue
over follow-up

over follow-up

1. Initiate treatment at
baseline and continue
over follow-up, unless a
contraindication occurs

. Do not initiate treatment
over follow-up, unless
an indication occurs

t initiate treatment
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Dynamic treatment strategies

« Take into consideration a patient’s evolving
characteristics before making a decision

* Decisions about prevention, screening, or treatment
interventions over time may depend on evolving comorbidities,
screening results, or treatment toxicity

* Strategies in clinical guidelines and practice are often
dynamic
* The optimal strategies will be dynamic
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WHEN ARE G-METHODS NEEDED?
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Conventional statistical methods cannot appropriately compare
dynamic strategies with treatment-confounder feedback
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G-methods

* Parametric g-formula
* G-estimation of structural nested models

* Inverse probability weighting of marginal structural
models
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CASE STUDY: PHYSICAL ACTIVITY AND SURVIVAL
AMONG MEN WITH PROSTATE CANCER
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Case study: Physical activity and survival among
men with prostate cancer

Question

« What is the effect of adhering to guideline-based
physical activity strategies on survival among men
with nonmetastatic prostate cancer?

Data
« Health Professionals Follow-up Study (HPFS)
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Eligibility criteria

Treatment strategies
Follow-up
Outcome

Causal contrast

Statistical analysis

Physical activity and survival among men
with prostate cancer

» Diagnosed with nonmetastatic prostate cancer at age 50-80 between
1998-2010

* No cardiovascular/neurological condition limiting physical ability
» Data on all potential confounders measured in the past 2 years

Initiate 1 of 6 physical activity strategies at diagnosis and continue it over
follow-up until the development of a condition limiting physical ability

Starts at diagnosis and ends at death, loss to follow-up, 10 years after
diagnosis, or administrative end of follow-up (June 2014), whichever
happens first

All-cause mortality within 10 years of diagnosis
Per-protocol effect

Parametric g-formula
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Parametric g-formula

* Generalization of standardization to time-varying exposures
and confounders

« Conceptually, the g-formula risk is a weighted average of
risks conditional on a specified intervention history and
observed confounder history

*  The weights are the probability density functions of the time-varying
confounders, estimated using parametric regression models

* The weighted average is approximated using Monte Carlo

simulation
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Steps of the parametric g-formula

(D Fit parametric regression models for treatment, confounders,
and death at each follow-up time t as a function of treatment and
covariate history among those under follow-up at time t

(2) Monte Carlo simulation to generate a 10,000-person population
under each strategy by sampling with replacement from the
original study population (to estimate the standardized cumulative
risk under a given strategy)

(3) Repeat in 500 bootstrap samples to obtain 95% confidence
intervals (Cls)
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Estimated risk of all-cause mortality under
several physical activity strategies

10-year Risk
Strategy risk (%) 95% Cl ratio 95% ClI
No intervention 154  (13.3,17.7) 1.0
All strategies excuse Vigorous activity
men from following the .4 55 | /yeek 13.0  (10.9,154) 0.84 (0.75,0.94)
;i;?/?y";j:ecf:jﬁﬁys'cal 2.5 h/week 111 (87,141) 072 (0.58,0.88)
development of >3.75 h/week 105  (8.0,13.5) 0.68 (0.53,0.85)
metastasis, MI, stroke, Moderate activity
CHF, ALS, or functional  >2.5 h/week 139 (12.0,16.0) 0.90  (0.84,0.94)
impairment >5 h/week 12,6 (10.6,14.7) 0.81 (0.73,0.88)
>7.5 h/week 122 (10.3,14.4) 079  (0.71,0.86)
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Potential unmeasured confounding by chronic
disease (i.e. reverse causation)

+ Severe enough to affect both physical activity and risk of
death

* G-formula provides a natural way to partly address this

* By estimating risk under physical activity interventions that are
only applied at each time point to those who are sufficiently
healthy at that time

* Main analysis: excused men from following the intervention

after developing metastasis, MI, stroke, CHF, ALS, or functional
impairment
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Sensitivity analyses for unmeasured confounding:
Expanded definition of “serious condition”

10-year Risk
],CAII st:catlclagies exck:]use men Strategy risk (%) 95% Cl ratio 95% CI
rom following the ; :
recommended physical No intervention 155 (138,17.4) 10 -
activity levels after _ Vigorous activity
development of metastasis,
]lc\/ll, stroker CHF, ALS, or >1.25 h/week 142 (12.4,162) 092 (0.85,0.97)
g hectore, buimbnary 225 h/week 131 (11.2,153) 084  (0.75,0.93)
embo“sm, hea_rt rhythm >3.75 h/week 12.8  (10.9, 14.9) 0.83 (0.72,0.92)
disturbance, diabetes, . .
chronic renal failure, Moderate activity
mceeurrgt?\fglgoﬁiﬁgrcl)trlségghug,s >2.5 h/week 143  (127,164) 093  (0.89, 0.96)
chJisiase, elmdp_hysema, J =5 h/week 13.7 (11.9,156) 0.89 (0.83,0.92)
rﬁ&h'igslgggler'gzia;e' an >7.5 h/week 134 (11.8,155) 0.87 (0.81,0.91)
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Sensitivity analyses for unmeasured confounding:
Lag and negative outcome control

« Lagged physical activity and covariate data by two years

* Negative outcome control to detect potential unmeasured
confounding by clinical disease

* Questionnaire non-response
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Original analysis Negative outcome control
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G-methods let us validly estimate the effect of
pre-specified dynamic strategies

* And estimate adjusted absolute risks
* Appropriately adjusted survival curves
* Not only hazard ratios
* Even in the presence of treatment-confounder feedback
« Under the assumptions of exchangeability, consistency,
positivity, no measurement error, no model misspecification

* Powerful approach to estimate the effects of currently
recommended or proposed strategies

* But, these pre-specified strategies may not be the optimal
strategies
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DISCUSSION: THE Al CLINICIAN
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Figure 1 Data flow of the Al Clinician
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Figure 2b Distribution of the estimated value of the clinicians’ actual treatments, the Al policy, a
random policy and a zero-drug policy across the 500 models in the MIMIC-Il test set (n = 500
models in each boxplot).
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Discussion
« Study overview
* System representation
* Policy evaluation
* Interpretability
e Future directions
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