
6.S897/HST.956 Machine Learning for Healthcare 

Lecture 17: Reinforcement Learning (II) 
Instructors: David Sontag, Peter Szolovits 

1 Lecture overview 

First half of the lecture was taught by Prof. David Sontag, followed by a guest lecture by Dr. Barbra 
Dickerman. 

1. Evaluation of policy - causal inference versus reinforcement learning (David Sontag) 

2. Evaluating dynamic treatment strategies (Barbra Dickerman) 

3. Discussion of the paper ”The Artificial Intelligence Clinician learns optimal treatment strategies for 
sepsis in intensive care” (faciliated by Barbra Dickerman) [KCB+18] 

2 Causal inference versus reinforcement learning 

How can we evaluate different policies in causal inference? How is it related to reinforcement learning? 

2.1 Reinforcement learning review 

In lecture 16, we learn a policy from value-maximization approach. Define the best policy π∗ as the policy 
with the maximum value: X 

π ∗ ← argmaxπVπ where Vπ = Eπ[ Rt] 
t 

Implication: We want to find a policy with high expected value of reward average over all patients. 

Caveats: 

• Under mission critical reward space (patient might die), we might want to capture the worst case 
reward rather than the average reward. 

• Infinite horizon (negative infinity for patients dying), which leads to infeasible optimization problem. 

• High variance in reward function. The average reward might be the same in this case compared to the 
uniform reward scenario. However, it is important that we capture the worst case rewards in different 
quantiles rather than averaging over the entire population. 

2.2 Covariate adjustment: expected reward of a policy 

In the previous lecture, we learn that, from the Q-learning algorithm, the expected reward of a policy can 
be given as: 

V̂π = maxaQ(s0, a) (1) 

We will show that we can come up with a similar formula for the expected value of a policy under causal 
inference. 

Recall that for covariate adjustment, we learn a function f(X, T ) ∼ E[Yt|X] and use it to define: 

CAT E(X) = f(X, 1) − f(X, 0) 
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Figure 1: 

For the rest of the lecture, consider a policy π such that: ( 
1 if CAT E(X) > 0 

π(X) = (2)
0 otherwise 

An analogous formula for expected value of a policy under causal inference is as following: 

1 X� � 
Ê[R(π)] = π(xi)f(xi, 1) + (1 − π(xi))f(xi, 0) (3) 

n 
i 

1 X � � 
= max f(xi, 1), f(xi, 0) (4) 

n 
i 

where (3)means that the expected value of reward is the average reward for each individual (patient) given 
the outcome of the policy and the treatment for that individual, (4) is the derived formula given the policy 
outlined in (2). Here, we can see the analogy between (2) and the expected reward of a policy under 
reinforcement learning, (1). 

For example: Consider the following case when covariate X is ”age” (single covariate) in Figure 1. The 
figure on the left shows the outcome given treatment/no treatment as a function of X. The figure on the 
right, on the other hand, shows the value of π(X)f(X, 1) + (1 − π(X))f(X, 0). The expected reward value, 
is averaged over all values of X’s in the population. 

2.3 Propensity score: expected reward of a policy 

We just review how we can estimate the expected reward of a policy given the counterfactual outcomes in 
covariate adjustment. However, we might want to derive a formula which doesn’t require having to estimate 
potential outcomes. 
Recall that to estimate ATE, we use the propensity score ei = P (T = 1|xi) in the following formula: � X X �1 yi yjˆAT E = + (5) 

n ei 1 − eji:ti=1 j:tj =0 

The inverse propensity score weighted (IPW) is a way to turn observational study into a pseudo-randomized 
trial by re-weighting samples. Therefore, we can estimate the expected reward of a policy, Ê[R(π)], by: X 

R̂IPW (π) = 
1 1[ti = π(xi)]yi 
n P (T = ti|xi) 

(6) 
i 

where 1[.] is the identity function. 
Pros: 
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• Don’t have to impute counterfactual outcome 

• Can derive the best policy given a considerably large observational dataset 

• In the randomized controlled trial setting, the P (T = ti|xi) = 0.5. Therefore, (6) gives an unbiased 
estimator of the policy’s reward for this randomized controlled trial. 

Cons: 

• Need to know the propensity score (for example: need to know the process of the randomized controlled 
trial or the underlying data generating distribution) 

• Large enough observational dataset to prevent overfitting and enable us to estimate the propensity 
score directly 

• If the dataset is small or if it has limited overlap, the estimation will have very high variance. 

If the randomized controlled size is large enough, we can derive the best policy without estimating ATE: 

RIPW (π)π ∗ ← argmaxπ 
ˆ 

which is a weighted classification problem. 
To learn more about this approach, please consult the papers by [SJ15] and [KZ18]. In the first paper, they 
tackle the above problem by realizing that they might need biased estimator (for example, the propensity 
score can be very small). And then, they use generalization results from the theory of machine learning 
to bound the variance of the estimator as a function of propensity score. The second paper deals with the 
problem of unobserved confounders. As the result, we might not know the propensity score. Therefore, they 
try to bound how wrong the estimator can be given that how much they don’t know about these confounding 
factors. 

2.4 Return to reinforcement learning 

Given the above estimator in 1-step causal inference, one can generalize to a t-step reinforcement learning 
value estimator as following: 

t
1 XX Y π(at0 |st0 )

V̂π = Ri,t (7) 
n P (at0 |st0 )

i t t0=0 

where π(at0 |st0 ) denotes whether action at0 is taken at time st0 in policy π. 
There are many other methods, such as W-robust estimator. More on [TB16]. 

3 Evaluating dynamic treatment strategies 

3.1 What is dynamic treatment strategies? 

1. Initiate treatment at baseline and continue over follow-up, unless a contraindication occurs 

2. Do not initiate treatement over follow-up, unless an indication occurs 

Clinicians encounter these problems in everyday practice. They need to take into consideration a patient’s 
evolving characteristics before making a decision. For example, decisions about prevention, screening, or 
treatment interventions over time may depend on evolving comorbidities, screening results, or treatment 
toxicity. Moreover, strategies in clinical guidelines and practice are often dynamic since they often take into 
account patient’s evolving characteristics over time. Likewise, the optimal strategies will be dynamic. 
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Figure 2: From this causal graph, we are interested in the effects of intervention A (vasopressors) on some 
outcome Y (survival). We know that the vasopressor will affect blood pressure, which then affect subsequent 
decisions about using vasopressor. We also know that blood pressure affects survival. In this graph, there 
is also an unobserved confounder U (disease severity) which affects both blood pressure and survival. If we 
want to measure the effect of a sustained treatment, we need to measure its effects at every single time point. 
L1 is a confounder for A1 and Y, and thus, a conventional statistical approach will lead to conditioning on 
a collider and inducing selection bias. As a result, there might be an association between A and L (maybe 
through the path A0 to L1 to Y). On the other hand, this association may not be a causal effect because it 
might be due to the selection bias. 

3.2 What is G-methods? When is it needed? 

Conventional statistical methods cannot appropriately compare dynamic strategies in the presence of treatment-
confounder feedback. In other words, this is when the time-varying confounders are affected by previous 
treatment effect (Figure 2). This problem can be solved with G-methods, which provide an estimation of 
structural nested models and inverse probability weighting of marginal structural models. 

Specifically, parametric g-formula is: 

• Generalization of standardization to time-varying exposures and confounders 

• Conceptually, the g-formula risk is a weighted average of risks conditional on a specified intervention 
history and observed confounder history 

– The weights are the probability density functions of the time-varying confounders, estimated using 
parametric regression models 

– The weighted average is approximated using Monte Carlo simulation 

The detailed steps for estimating parametric g-formula in this study is presented in Figure 3. 
To elaborate on the steps of the study: 

1. First, we make copies of our dataset such that everyone is adhering to the strategy in each copy. We 
need to build each copy from the ground-up at time 0. The values of the covariates are sampled from 
the empirical distribution. Then, we fit regression models for these covariates. 

2. At time step t, we use the regression models fitted earlier and force the level of treatment to be the 
level of treatment specified by the strategy. Then, we estimate the outcome using the regression models 
for the outcome values. 

3. Repeat 2 over all time period. 

4. Average the subject risks. 
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Figure 3: Detailed steps of parametric g-formula 

Figure 4: Workflow of the study of physical activity and survival among men with prostate cancer. The 
strategies and conditions have been pre-specified. 

3.3 Case study: Physical activity and survival among men with prostate cancer 
[DGP+19] 

What is the effect of adhering to guideline-based physical activity strategies on survival among men with 
nonmetastatic prostate cancer? To evaluate this, one possible idea is to conduct a randomized controlled 
trial. However, prostate cancer progresses very slowly and such a trial may take up to 10 years. Therefore, 
they feel the need to estimate this effect by combining high-quality observational data and G-formula. The 
data is leveraged from Health Professionals Follow-up Study (HPFS). 

In order to apply the G-formula, they follow the three steps listing below: 

1. Establish a protocol of the targeted trial that would have been helpful to conduct, if feasible 

2. Measure enough covariates to adjust for confounding and achieve conditional exchangeability 

3. Choose a statistical method to compare the specified treatment strategy under the assumption of 
conditional exchangeability intervals (CIs) 

The overall workflow is detailed in 4. 
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Figure 5: Main results of the study. 

3.4 Primary results 

The main result is presented in Figure 5. More importantly, the two main takeaways are: 

1. Weekly dose/level of the intervention has been specified and based on current guidelines. 

2. Covariates that make the strategy dynamic have also been prespecified. For example, all strategies 
excuse men from following the recommended physical activity levels after development of metasta-
sis, MI, stroke, CHF, ALS, or functional impairment, angina pectoris, pulmonary embolism, heart 
rhythm disturbance, diabetes, chronic renal failure, rheumatoid arthritis, gout, ulcerative colitis or 
Crohns disease, emphysema, Parkinsons disease, and multiple sclerosis (all of these conditions have 
been ”prespecified”). 

3.5 Sensitivity analysis 

Here, we present one of the sensitivity analyses for unmeasured confounding by lag and negative outcome 
control. 

1. Lagged physical activity and covariate data by two years 

2. Negative outcome control to detect potential unmeasured confounding by clinical disease (Question-
naire non-response) 

In conclusion: 

G-methods let them validly estimate the effect of pre-specified dynamic strategies. 

4 Discussion of ”THE AI CLINICIAN” [KCB+18] 

The key takeways from the discussion are: 

1. The paper failed to prove whether the AI policy really has a causal effect on survival or it has an 
advantage due to bias. 
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2. The features did not capture the causal interpretation. Because the covariates are binned in 4 hours, 
they may overlook or may not capture the intervention at all. 

3. The system also failed to capture the confounders (again, because the covariates are binned in 4-hour 
bins). 

4. The evaluation might favor the AI policy more than other policies. 
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