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Lecture 6: Physiological time-series 
Instructors: David Sontag, Peter Szolovits 

1 Survival Modeling Continued 

1.1 Recap of previous lecture 

As discussed in the previous lecture, the goal of survival modeling is to predict the wait time until the 
occurrence of an event. Examples of events of interest include death, divorce, graduation, and recidivism. 
However, unlike typical supervised learning tasks, the data are right censored, meaning that the labels are 
not fully observed. Figure 1 shows an example of a right censored dataset. 

Figure 1: Each line represents a subject in the study. Black crosses represent the occurrence of an event, 
and red dots represent censored time points. In the case of a censored time point, all we know is that the 
event we actually care about occurred after the censored time point. From [WLR17] 

Due to the right censored nature of the data, typical supervised learning approaches are unsatisfactory. 
For example, modeling this as a regression task would mean not using any of the censored datapoints. Not 
only is this data inefficient, but it may also result in a biased model, as censoring is not random. 

1.2 Notation and formalization 

In survival modeling, each datapoint can be represented as a tuple (x, T, b), where 

• x is a vector of features 

• T is the time of the event 

• b is an binary indicator, which is 1 if the event is censored, and 0 otherwise 

6.S897/HST.956 Machine Learning for Healthcare — Lec6 — 1 



The main function we are interested in modeling is the death density f(t), which can be interpreted as the 
probability of death at time t. It is also common to refer to the survival function, which is the probability R ∞
of an individual surviving past time t, defined as S(t) = P (T > t) = f(t)dt. As we are interested in how 

t 
the features x affect the survival function, it is often the case that f(t) = f(t|x) is a function of x as well. 

1.3 Learning Survival Models 

1.3.1 Parameterization 

In the last lecture, we discussed non-parametric methods for learning survival models, such as the Kaplan-
Meier estimator. Now, we discuss parametric methods, which assume a specific form for the density f(t). 
Table 2 shows commonly used forms for f(t), and the corresponding survival function S(t). These functions 
are non-negative and have long tails, which reflect the nature of wait times. 

Figure 2: Useful parametric distributions for survival models 

Note that the densities f(t) in the table are parameterized by λ, which we want to learn. It can be a function 
of the features x, i.e. λ = g(x), where g is any function, such as a deep neural network or a random forest. 

1.3.2 Maximum Likelihood Estimation 

Now that we have a functional form for the density, we can learn the parameters through maximum likelihood 
estimation. The likelihood of an uncensored event is Pθ(t|x) = f(t), and the likelihood of a censored event 
is P censored(t|x) = Pθ(T > t|x) = S(t). Putting the two together, we find that the maximum likelihood θ 
estimator is 

nX 
bi log P censoredMLE = (t|x) + (1 − bi) log Pθ(t|x) (1)θ 

i=1 

This objective can now be optimized using stochastic gradient ascent. 

1.4 Evaluation Metrics 

The primary metric used to evaluate survival models is the concordance index, otherwise known as the C-
statistic. The idea of the concordance index is that a good model should rank individuals who survive longer 
higher than individuals who die sooner. To formulate this mathematically, consider the function produced 
by the survival model, S(E), that gives a score to event E indicating the relative time at which E occurs. 
Then the concordance index is the probability that an event Ej , which occurs after event an event Ei, is 
ranked higher (S(Ej ) > S(Ei)), where Ej is any event, censored or uncensored, and Ei is an uncensored 
event: X X1 

ĉ = I[S(Ej ) > S(Ei)] (2) 
num pairs 

Eiuncensored Ej >Ei 
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The reason that Ei must be uncensored is because we don’t know the true time of occurrence of an uncensored 
event. Thus it does not make sense to say that another event Ej occurs after an uncensored event. 

Other metrics we may be interested in include 

• mean squared error for uncensored individuals 

• the likelihood of the censored (held out) data 

2 Dealing with non-stationarity 

We’ve talked about some of the issues of having non-stationary data, and about ways to detect it, but how 
can we actually build models that are robust to non-stationarity? 

In the case that we have lots of data, one way to get around the issue is to train on only the most recent 
data i.e. the past three months. With such a short time between the train and test data, there is unlikely 
to be many non-stationary effects. However, this approach is not data efficient, and it is generally not the 
case that there is enough data for this approach to be useful. 

There is a large amount of literature on the topic of how to best use historical data - here, we will discuss 
a few of the main approaches: 

1. Impute or transform historical data to look like current data (e.g., [GUA+16], [FHS+17]) 

The idea of this approach is to adjust the training data to look like the test data. A very simple 
example would be to convert ICD-9 codes in the training data to the ICD-10 codes used in the test 
data. Another example would be to develop a model to impute missing data in the training and test 
data as in [FHS+17]. This makes the model more robust to biases in the missing data. 

2. Reweight historical data to look like current data (see [SK12]) 

The idea of this approach is to up-weight the subsets of the training data that are more similar to the 
test data, and down-weight the subsets that are less similar. 

3. Online algorithm that adapts quickly (see e.g. [BRJ+18]) 

Many learning algorithms work with a static training set and treat all datapoints equally. These are 
called offline algorithms. An alternative is to use online algorithms which process data points in a 
given order, such as chronologically, and can train on new data as it comes in. These algorithms can 
be made to adapt quickly to changes in the data distribution and thus be robust to non-stationarity. 

3 Physiological time-series 

3.1 Overview 

In the past, physiological time-series were prevalent mostly only in hospitals. For example, Figure 3 shows 
various physiological signals typically recorded from a baby born prematurely, such as temperature and 
heart rate. Now, however, physiological time-series are coming to consumers in the form of devices such as 
smartwatches, which may contain monitoring devices such as an EKG. Thus the ability to make inferences 
from physiological time-series is becoming more and more important. 

Unfortunately, physiological time-series are often very noisy. A typical use case is then to infer the true 
signal from a noisy signal. These improved signals can then be used for downstream tasks such as risk 
stratification. 

The approach to this problem depends heavily on the amount of labeled data that is available. In this 
lecture, we will see two opposite ends of the spectrum - in one case, there is almost no labeled data, and in 
the other, labeled data are plentiful and easy to acquire. 
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© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/ 

Figure 3: From [MQW08] 

3.2 Neonatal Condition Monitoring 

Our first case study is a case where there is very little labeled data. Clinicians in the ICU often use 
physiological time-series such as those in Figure 3 to monitor the condition of a prematurely born baby. 
They are typically able to identify the state of the neonate, normal or abnormal, based on the time-series 
data. We would like to create a computer algorithm to do the same, but the problem is complicated by 
artifacts in the data. These artifacts may look abnormal at first glance, but are actually not related to changes 
in the baby’s state. For example, a clinician may temporarily remove a temperature probe, resulting in the 
temperature probe reading suddenly disappearing. This is then followed by an abnormally low reading when 
it is reconnected, as the probe has cooled off since disconnection. This situation is termed “dropout”. Figure 
4 shows the effect of dropout and various other confounding interventions. 

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/ 

Figure 4: Effect of confounding interventions. From [MQW08]. 

If we can identify these artifactual processes, then we can remove them for use in a downstream task. An 
algorithm which makes use of this de-noised time series can then also reduce alarm fatigue, by not alerting 
clinicians unnecessarily. Next, we’ll discuss one approach to this problem, taken by the authors of [MQW08]. 
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3.3 (Switching) linear dynamical systems 

3.3.1 Overview 

As we have said, measurements that are observed (Y) can be noisy and don’t always reflect the true state 
of a patient (X). 

For instance, blood pressure measurements are extremely noisy due to the noise induced by the machines 
but also by the state of the person (is he/she tired, has he/she just smoked)? 

Figure 5: Kalman filters 

Kalman filters can be used to understand the true state of a patient. 

Kalman filters are a special case of (dynamic) Bayesians network. Given an observed Y caused by an X 
we try to infer X, and in Kalman filter we do this across time/different states. 

We want to maximize the likelihood of observing X given Y. 
In this example we would want to maximize: 

P (X1, X2, X3, X4, X5, X6|Y1, Y2, Y3, Y4, Y5, Y6) 

We make an assumption that this joint distribution can be factorized: 

(3) 

P (X1, X2, X3, X4, X5, X6|Y1, Y2, Y3, Y4, Y5, Y6) = P (X1)P (Y1|X1)P (X2|X1)P (Y2|X2).... 

Which allow us to characterize a complex distribution by multiple simple distributions. 

(4) 

The assumption made here is pretty strong and is true only for Markov Models, memory-less models where 
the next observation depends only on the previous observation and not the full history of observations: 

∀n ≥ 0, ∀ (i0, . . . , in−1, i, j) ∈ En+2 
(5)P (Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i) = P (Xn+1 = j|Xn = i) 

Another assumption made with Kalman filters is that: 
Xt depends only on xt−1, with a gaussian distribution and a fixed covariance matrix and yt only on xt 

with another fixed covariance matrix: 
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� � 
A(st)xt−1 + d(st), Q(st)xt ∼ N � � (6) 
C(st)xt, R

(st)yt ∼ N 

Y1 should be very close to X1 if it is a good observation. If it’s noisy it’s not going to be case (e.g.: if 
the prob disconnects then there is no correlation between yt and xt). 

In order to better understand these connections between X and Y, and just how X can also be affected 
by external factors it’s useful to add confounding factors (e.g.: artifactual events). 

In that case the full model is the following: 

Figure 6: Full Kalman filters 

Here s are others random event denoting artifactual events. To get more context on this: [PL15] 

When running these models you have to ask yourself what type of data do you have. 

3.3.2 Learning SLDS models 

If we follow the BP example again: we only get to observe the very noisy BP point across time. We have to 
think on X and s as latent variables and we want to maximize their likelihood. 

However it’s often a non-convex problem, very hard to solve. 
We cannot use the gradient descent algorithm (it would only converge to a local optimum). We can use 

instead the EM (Estimation-Maximization) algorithm. 

• We have to assume that we have some labeled training data :{s, y} 

• The true state x is assumed to never be observed 

• Learn using the expectation maximization algorithm 

As we observe only y, we can wonder will this algorithm ever recover the true state? 
It’s why it’s essential to bring in domain knowledge. 
With this domain, we then try to constrain the model as much as we can. 
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Figure 7: Estimation-Maximization algorithm 

3.3.3 Parameterizing model 

Problem: Indeed, if we leave to many degrees of liberty to the model (as in Neural Networks), it will be 
harder to learn complex relations with few data points. The model is maybe more likely to overfit. 

Solution: We can use domain knowledge to help parameterize the model. For instance, normal heart 
rate (HR) dynamics are well-modeled using autoregressive (AR) processes: 

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/ 

Figure 8: Heart rate denoised 

The true signal is basically what you observe when you squint your eyes, when you denoise it. 
The noise signal has a zero mean. The sum of b(t) and the residual corresponds to the exact HR signal. 
We can model both by random walk, going slowly (for the true signal) and quickly for the error/noise. 
Please refer to the paper [MQW08]. 

Problem: There should not be any dependence between y and x after some time. However, we don’t 
how fast this dependence will be removed. For instance, a thermometer takes time to cool. Know how fast 
it cools would be really helpful. 

Solution: Another way to use domain knowledge is to specify specify parts of the artifacts model: 
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• Probe dropouts modeled by removing dependence of observation yt on patient state xt 

• Temperature probe disconnection: exponential decay to room temperature 

3.3.4 Evaluation 

It’s pretty difficult to evaluate these models. We have to assume that the first 30min consists of a normal 
distribution (with no artifact). 

Then we can look at the ROC curve of the ability to predict each artifact (when a blood sample was 
taken, a probe disconnected). 

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/ Figure 9: Evaluation ROC curve 

In this graph we compare 3 different approaches: 

• GS = Gaussian-sum approximation (used for inference) 

• RBPF = Rao-Blackellized particle filtering approximation (used for inference) 

• FHMM = Factorial HMM (simpler model not modeling normal physiologics dynamic) 

We can see that the GS, which is deterministic, outperforms the other methods. 
The black bar on the time represent when the blood sample was taken or when the probe was disconnected. 
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Figure 10: Inference of physiological state 

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
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Figure 11: Inferred switch settings 

3.4 Detecting Atrial Fibrillation 

3.4.1 Description of the problem 

Our second case study is a case where labeled data is plentiful. Atrial fibrillation (AF) is the irregular beating 
of the heart, which can lead to problems such as blood clots, heart failure, strokes, and other illnesses. One 
way AF can be detected is by using ECG recordings. Figure 12 shows ECG recordings for normal heart 
rhythms and AF heart rhythms. 

In the past, data was less plentiful and the best algorithms for detecting AF using ECG time series data 
were based on a combination of hand engineered features and machine learning. This was true as recently as 
2017, when Clifford et al. held the PhysioNet challenge for AF Classification from a short single lead ECG 
recording [CLM+17]. Figures 13 and 19 give a sense of the kinds of hand engineered features used. 

It might seem surprising that no CNN approaches worked. For the 2017 Physionet challenge we had only 
8500 ECGs, maybe it was not enough... 

”With so many parameters and hyperparameters to tune, the search space can be enormous and significant 
overtraining was seen” [CLM+17] 

As it turns out, with a much larger dataset, we can avoid using hand engineered features, and use more 
expressive machine learning models such as convolutional neural networks. 

3.5 Atrial fibrillation detection using convolution neural networks 

The paper [PR19] ”develop a model which can diagnose irregular heart rythms (arrhythmias) from single-lead 
ECG signals better than a cardiologist.”. 

6.S897/HST.956 Machine Learning for Healthcare — Lec6 — 9 

https://ocw.mit.edu/help/faq-fair-use


        

     

                
              

              
             

                
    

                  
               
 

              

                
             

3.5.1 Differences with previous work 

Even if the model performs really well we have to outline a few differences with previous work: 

• The sensor used was less noisy 

• More ECG (90K ECG records annotated from 50K patients) 

• This model identify 12 heart arrhythmias, sinus rhythm and noise for a total of 14 output classes 
(versus 4) 

• The data was better (they look where the errors where and then they got more people with these 
errors) 

© IPEM. All rights reserved. This content is excluded from our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/

Figure 12: Descriptions of hand engineered features. From [TGCF18] 

3.5.2 Architecture of the model used 

”While artificial neural networks were first applied toward the interpretation of ECGs as early as two decades 
ago, until recently they only contained several layers and were constrained by algorithmic and computational 
limitations. More recent studies have employed deeper networks, although some only use DNNs to perform 
certain steps in the ECG processing pipeline, such as feature extraction33 or classification25. End-to-end 
DNN approaches have been used more recently showing good performance for a limited set of ECG rhythms, 
such as atrial fibrillation”. [?] 

Here the network is deeper network (34 layers), and thus a bit more a black box. This study ”demonstrates 
that the paradigm shift represented by end-to-end deep learning may enable a new approach to automated 
ECG analysis.” 

The shortcuts connection allow the ”information” to be passed quickly (similarly than in residual neural 
network). 

The convolution layers apply a filter (a matrix, for instance 3x3) to all possible combination of matrix 
3x3 in the input, apply an element-wise multiplication and then summing all the values. 
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3.5.3 Evaluation 

In order to evaluate the model, they used a sequential evaluation= how good are we at labeling point 
(normal/abnormal) across a sequence of point in time. 

It’s interesting to notice that the performances of the model is nearly always as good as the performances 
of the cardiologist: 

(In bold you can observe the best performances between cardiologist and the model). 
”The average F1 score, which is the harmonic mean of the positive predictive value and sensitivity, for the 

DNN (0.837) exceeded that of average cardiologists (0.780). With specificity fixed at the average specificity 
achieved by cardiologists, the sensitivity of the DNN exceeded the average cardiologist sensitivity for all 
rhythm classes. These findings demonstrate that an endto- end deep learning approach can classify a broad 
range of distinct arrhythmias from single-lead ECGs with high diagnostic performance similar to that of 
cardiologists.” 

This is an example of model that has been deployed (apple watch works with a similar algorithm). 
On the ”ROC and precision-recall curves comparison” graph we can observe that for a given sensitivity 

the model nearly always outperforms cardiologist. 
What is even more interesting is that the model seems to be making similar errors as the cardiologists. 

4 Summary 

• The lack of data is always there, and it has a huge impact of deep learning approaches 

• Deeper, end-to-end/ black box, neural network performs better and better, especially when they are 

fed more data. 

• However, modeling and incorporating prior domain knowledge remains critical to obtain good perfor-
mance 

A few design principles 
- Model the distribution of physiological dynamics 

• - Derive features using existing clinical knowledge 
- Start from the simplest possible model 
- Share statistical strength across tasks 
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[TGCF18] Tomás Teijeiro, Constantino A Garćıa, Daniel Castro, and Paulo Félix. Abductive reasoning as 
a basis to reproduce expert criteria in ecg atrial fibrillation identification. Physiological measure-
ment, 39(8):084006, 2018. 

[WLR17] Ping Wang, Yan Li, and Chandan K Reddy. Machine learning for survival analysis: A survey. 
arXiv preprint arXiv:1708.04649, 2017. 

6.S897/HST.956 Machine Learning for Healthcare — Lec6 — 12 



MIT OpenCourseWare 
https://ocw.mit.edu 

6.S897 / HST.956 Machine Learning for Healthcare 
Spring 2019 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page




