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Lecture 13: Machine Learning for Mammography 
Instructors: David Sontag, Peter Szolovits 

1 Breast Image Interpretation: Background and Challenges 

Breast cancer affects over 2 million women of the 3.8 billion women globally, and is estimated to contribute 
to over 40,000 U.S. deaths and 600,000 worldwide deaths annually. The primary method for breast cancer 
diagnosis is the interpretation of mammography images, which are breast X-ray images. Mammograms 
are normally acquired from two different angles: craniocaudal (CC, which is a 2D projection of the axial 
view), and mediolateral oblique (MLO, which is a 2D projection of the frontal coronal view). Ideally, we 
would like to use these images for early detection of breast cancer, which would allow for more effective 
treatments and potential cures. It is particularly important to detect cancerous tissue before the non-
metatstatic to metastatic transition, after which a cure is no longer feasible. The two primary challenges 
with mammographic analysis for this purpose are: 

• Accurate risk assessment tools 

• Effective screening tests 

Specifically, the three main problems that need to be addressed to resolve these challenges are: 

• No risk assessment models are able to predict individual risk accurately 

• There is significant variability in human interpretation of mammograms 

• Widespread standardization and application of mammography are limited by the dearth of specialial-
ists. 

1.1 Mammogram interpretation 

The two questions that radiologists ask when analyzing a mammogram are: 

• How dense is the breast tissue? 

• Is it a normal or abnormal mammogram? 

In a mammogram (an example of which is given in Figure 1, the white pixels represent the breast tissue and 
black pixels represent fatty tissue inside the breasts; thus, breasts with higher densities of white pixels have 
higher breast density. The current standard medical practice is for radiologists to bin the tissue density into 
four categories: fatty (low density), scattered, heterogeneously dense, and dense. However, since cancerous 
tumors are also small blobs of white pixels, dense breast tissue can sometimes obscure or make it more difficult 
to detect anomalous cancerous tissues. The difficulty of finding small cancerous tissue in mammograms is 
illustrated by the case studies in Figure 2. 
Because of the 2D nature of traditional mammograms, patients with higher breast densities tend to receive 
more false negative mammograms, in which cancerous tissue is mistakenly diagnosed as healthy. This is 
shown in Figure 3, in which a 3D reconstruction of the breast tissue acquired using tomosynthesis (in which 
optical slices in the axial dimension are taken for 3D tomography) shows that cancerous tissue was missed in 
the 2D projection due to breast density. Although false negatives are the least frequent type of mammogram, 
it is particularly devastating because of the consequences it entails for the affected patient, who does not 
receive the appropriate treatment or care. 
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[Image removed due to copyright restrictions.] 

Figure 1: Mediolateral oblique (MLO) view of a breast mammography with relevant components labeled. 
[And12] 

Figure 2: Two examples of time-evolving mammograms with developing cancerous tissue, indicated by the 
red circles. The cancerous tissue is small and blends in with the rest of the breast tissue. 

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

1.2 Risk assessment 

For early detection of breast cancer, it’s important for accurate risk assessment tools to be available to 
interpret mammograms. With more accurate risk forecasting, more action can be taken prior to lymph 
node localization or metastasis. While false negatives (as described in Section 1.1) are particularly harmful 
to individuals, false positive mammograms can also have deleterious effects on patients. The side effects 
of chemotherapy or radiation therapy can be particularly damaging to a patient, especially if they are a 
false positive. Thus, the preferred method of investigating perceived high-risk patients is through the use of 
magnetic resonance imaging (MRI), which is an extremely useful but expensive non-invasive imaging tool. 
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Figure 3: 2D vs. 3D Tomosynthesis mammograms. The 2D projection obscures the cancerous tissues that 
the tomosynthesis reveals. Images courtesy of Drs. Di Maggio G Gennaro, Istituto Oncologico Veneto 
I.R.C.C.S. (Padova, Italia) 

© Maggio and Gennaro. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/ 

However, classical risk models are quite limited, in that they use some basic patient features (e.g. age, race, 
breast density, family history) to generate risk assessment, and oftentimes are quite sensitive to certain vari-
ables. Additionally, the subjective categorization of tissue density (as described in Section 1.1) is subject to 
high variance between different radiologists, making that qualitative feature somewhat unreliable in classical 
risk models. We can see this exemplified in Figure 4. 
The limitations of current clinical risk assessment procedures are elegantly captured by the fact that 75% of 
all early MRI screens are performed in women with less than 20% lifetime risk, while only 2% of the women 
with over 20% lifetime risk receive an early MRI. In this sense, the current risk assessment tools are unable 
to be effective because they are not correctly screening the at-risk population. 

Deep learning models for mammogram interpretation 

The usual process for triaging mammograms can be described by the following steps: 

1. Routine screening (1000 patients) 

2. Callback for additional imaging (100 patients) 

3. Biopsy sample collection (20 patients) 

4. Diagnosis / triage (6 patients) 

To harness deep learning (DL) for mammogram triaging or risk assessment, we follow a standard procedure 
for clinical deployment and utilization: 

1. Dataset collection 

2. Modeling 
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Figure 4: Variation in radiologist assessment of breast density. Radiologists vary in ”dense” breast tissue 
classification rates from 6% to 85%. [SCO+16] 

3. Clinical implementation 

In this section, we introduce the development of a model for automated mammogram triaging and another 
model for risk assessment. 

2.1 Mammogram triaging 

The goal of the mammogram triaging model is to improve efficiency by reducing the false positives of cancer 
triaging (especially since >99% of patients are cancer-free). Given a cancer-free threshold that is set from 
training and development of the algorithm, the triaging process can be streamlined for radiologists by having 
them skip analysis of mammograms below the threshold. 

2.1.1 Dataset collection 

Data was collected from mammograms in 5 hospital registries, and patient outcomes from Radiology EHR 
and Partners. These data were pulled from all available screening mammograms between January 2009 
and December 2016 (inclusive), with no exclusions made based on race, age, implants or other features 
of that nature; however, patients with other cancers in the breast were excluded as well as patients with 
negative exams that did not have a 1-year followup. After these exclusions, there remained 223,109 distinct 
mammograms from 66,661 unique patients. Since some patients had multiple data points, the training, 
developmental (dev), and test sets were split by patient to prevent model memorization of patient inputs. 
The training set contained 1,472 positive exams (1,453 unique patients) and 210,804 negative exams (56,790 
unique patients); the development set contained 167 positive exams (163 unique patients) and 25,832 negative 
exams (7,019 unique patients); the test set contained 191 positive exams (187 unique patients) and 26,349 
negative exams (7,170 unique patients). 
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2.1.2 Challenges of applying DL to mammogram triaging 

While many aspects of the task of cancer detection based on mammograms are similar to that of natural 
image classification (ImageNet), there are some key differences that make this task tricky. First of all, the 
signal-to-noise-ratio (SNR) is much lower in mammograms compared to natural images. In other words, the 
cancerous tissue and region that is relevant for image classification is much smaller (tends to be around 1% 
of the image, exemplified in Figure 2) than the size of the relevant object(s) in natural images. 

The images in mammogram datasets are also much larger than natural images. For instance, mammograms 
tend to be on the order of 3000 by 2600 pixels, whereas ImageNet images tend to be orders of magnitude 
smaller. This leads to issues with memory and parallelization – in particular, the batch size is limited, 
which makes the stochastic gradient updates much noisier, and can impede model learning. Large individual 
images also just presents memory and storage issues in general; for example, the data set for this particular 
project was over 12 TB. Image size and low SNR ratio both lead to a separate challenge: if patches are used, 
this can lead to removal of important context, which can make it difficult to differentiate between cancerous 
and non-cancerous tissues. 

Lastly, if patch-based data is used, there is a heavy class imbalance, in that only around 0.7% of the inputs 
are positive, while the vast majority are negatives. While there are methods for resolving this being actively 
researched and implemented in the machine learning community, it is still a non-trivial challenge. 

2.1.3 Building the model 

In building the DL model, the first thign considered was initialization of the model. Adam Yala and colleagues 
decided to use ImageNet pre-trained CNN models (e.g. VGG, ResNet, Wide-ResNet, DenseNet) to initialize 
the network, and then to mitigate the small batch size issue (talked about in section 2.1.2) that is a result of 
the large size of the images, they performed several forward and backpropagation steps through the network 
before updating the weights via gradient descent. In essence, this allows them to use a larger batch size 
than GPU memory allows, but doing it in series rather than in parallel. For this, they utilized a batch size 
of 24 (by taking 2 full steps with batch size 3 distributed over 4 GPU’s). They found that initializing with 
ImageNet allowed for learning to occur much quicker (demonstrated in Figure 5) than when initializing the 
model randomly. One possible explanation for this is that the batch normalization statistics are more stable 
to begin with when using pre-trained weights from ImageNet. 

Figure 5: Loss vs. Epoch with ImageNet initialization and random initialization. ImageNet initialization 
allows for learning to occur quicker. 

In selecting a base architecture of the model, they preferred models that were fully convolutional to allow 
for flexibility in feeding in inputs of varying resolutions; thus, the ResNet-18 model was chosen. This was 
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especially important in implementing a two-stage training method in which patches from the mammograms 
were sampled and fed to the network to pre-train the network, and then followed by fine tuning the model 
using the full-sized images. The researchers found that with the aforementioned serial batch size method, 
they could resolve the noisy stochastic gradient problem and directly train the model using the full sized 
images. 

Finally, in order to calibrate the class balance to the real incidence of either class, Platt’s method is used, in 
which a sigmoid function is learned to scale and shift the probabilities calculated from the model (based on 
training data) to the true incidence rate. In this manner, the incidence rate of classes in the training data 
does not skew the distribution of predictions during inference. 

The model triaged by ranking radiologist true positives by the probability assigned by the model, and then 
returning the minimum probability of radiologist-identified true positive in the development set. To evaluate 
the best model, instead of using AUC, the triage ability of the model on the dev set was used. 

2.1.4 Results 

The objectives of the model during analysis were: 

• Is the model discriminative across all populations? 

• Does the model capture radiologist mistakes or do they overlap? 

• Assess the triage on test set 

The model achieved an AUC of 0.82 (confidence interval: [0.8, 0.85]) on the dev set, with no statistically 
significant difference in predictive value between varying ages, races, and breast densities. The main goal 
of the model was to not miss a single cancer the radiologist would have caught, in order to be used as an 
aid (and not replacement) for medical professionals. Thus, it is important to assess how the performance 
compared to radiologist assessments. It was determined that the model was able to triage significant portions 
of radiologist-assigned true positives, false positives, and true negatives that were below the model’s triage 
threshold, both reducing radiologist labor (on the true positives and negatives) and limiting the false positives 
(by triaging those below the threshold as cancer-free, shown in Figure 6). These results are summarized 
quantitatively in Table 1, with the model increasing specificity by 0.7% and reducing the % of mammograms 
read by radiologist by 20%. 

Setting Sensitivty (95% 
CI) 

Specificity (95% 
CI) 

Mammograms 
Read (95% CI) 

Original Interpreting Radiologist 90.6% (86.7, 94.8) 93.0% (92.7, 93.3) 100% (100, 100) 
Original Interpreting Radiologist 
+ Triage 

90.1% (86.1, 94.5) 93.7% (93.0, 94.4) 80.7% (80.0, 81.5) 

Table 1: Test set triage simulation results. 

2.2 Mammogram risk assessment 

2.2.1 Dataset collection and model construction 

A similar method was followed to build a DL model for mammogram risk assessment. Here, the data set 
was constructed similarly by using mammogram images from a 5 Hospital Registry and patient outcomes 
from Radiology EHR and Partners from January 2009 to December 2012 with no exclusions based on race 
and other factors. Again, patients with other cancers in the breast were excluded, but (different from the 
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Figure 6: With the cancer-free triage threshold of just above 0.2 model-predicted risk percentile, the 
radiologist’s false positives colored in blue can be eliminated by the automated triaging done by the model. 

triage dataset) patients with negative exams which lacked a 5-year followup exam were excluded because the 
goal was to predict 5-year breast cancer risk. Once again, the train/dev/test sets were split by patient to 
prevent model memorization. In the end, the train set had 71,689 mammograms (31,806 unique patients), the 
validation set had 8,554 mammograms (3,804 unique patients), and the test set contained 8,751 mammograms 
(3,937 unique patients). The test set was constructed with an additional exclusion of excluding exams within 
one year of a cancer diagnosis. In this manner, the predictive value of the model could be limited to one 
temporal image per patient. 

2.2.2 Results 

The objectives of this study were to: 

• Is the model discriminative across all populations? 

• How does the DL model relate to classical models? 

The same considerations for building the DL model from the previous section are used for this one, and the 
researchers decided to compare the risk assessment performance of (1) the DL model using image only, (2) 
DL using image and other classical features (e.g. age, race, breast density), and (3) Tyrer-Cuzick (a classical 
approach). Briefly, the Tyrer-Cuzick model estimates breast cancer risk from various family history, physical 
statistics, and demographic data. As shown in Figure 7, the hybrid method using DL image + features 
achieved an AUC of 0.7, whereas the DL image only model achieved an AUC of 0.68, and the traditional 
feature-based Tyrer-Cuzick achieved an AUC of 0.62. 

It is particularly interesting to note that the Tyrer-Cuzick model, since it was trained on only white women, 
performed especially poorly on risk assessment of African-American women, achieving an AUC of 0.45 
(the DL + features model achieved 0.71 AUC, as seen in Figure 8). This is worse than a model that is 
guessing randomly. Additionally, we see that the DL image + features model is discriminative across different 
populations by performing significantly better than the Tyrer-Cuzick model on various sub-populations, as 
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shown in Figure 9. Thus, we see that harnessing deep learning can have real potential to improve the risk 
assessment models that are used currently. 

Figure 7: AUC on the test set using various risk models. The deep learning combined with classical features 
model performed the best. 

Figure 8: AUC comparison between models on white and African American women sub-populations 

Figure 9: AUC comparison for various sub-populations, showing that the novel image + features DL model 
outperforms classical approaches. 

2.2.3 Potential pitfalls 

While deep learning is able to perform particularly well in mammogram interpretation, there are still chal-
lenges associated with it before it can achieve widespread clinical implementation. In particular, most data 
sets collected for mammogram interpretation are enriched, potentially not reflecting the true distribution of 
the data, and certainly contain biases (e.g. machine-specific collection at a certain hospital). For example, 
one dataset collected at a hospital in Shanghai had collected all of the cancer-positive data first, before 
collecting the negatives consecutively. This resulted in a skew dataset when researchers tried to use an 
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incomplete version of the data set. Another potential pitfall to automated mammogram interpretation is to 
interpret performance on reader studies as if they were clinical implementations. Reader studies should not 
be interpreted this way not only because of the dataset pitfalls mentioned previously, but because oftentimes 
inconvenient cases are excluded from the data set. For instance, a research study might filter out a dataset 
by breast size, or race, due to insufficient data points, or some other reason of analysis inconvenience. This 
will certainly further bias the dataset towards certain demographics and types of mammograms, thus making 
it non-generalizable and unsuitable for clinical implementation. 

Future outlook 

In the past, traditional computer-aided diagnosis (CAD) did not perform well in mammogram interpretation, 
and was primarily used as a money-driven endeavor. With the development of new imaging modalities such as 
tomosynthesis (which takes 2D optical sections of the breast to provide a 3D reconstruction), AI technology 
and hospitals have struggled to keep up. However, combined with ever-increasing amounts of data, recent 
applications of deep learning towards mammogram triaging and risk assessment have greatly improved upon 
classical methods, providing a promising outlook of a more efficient and life-saving clinical pipeline. 
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