#### Machine Learning for Healthcare HST.956, 6.S897

#### Lecture 15: Causal Inference Part 2

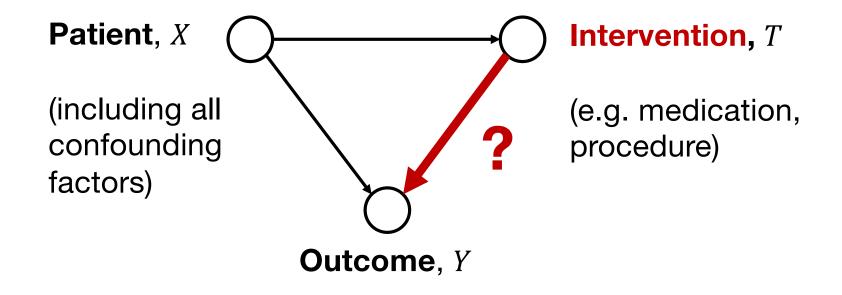
#### David Sontag





Acknowledgement: adapted from slides by Uri Shalit (Technion)

#### Reminder: Causal inference



High dimensional

**Observational data** 

#### Reminder: Potential Outcomes

- Each unit (individual)  $x_i$  has two potential outcomes:
  - $Y_0(x_i)$  is the potential outcome had the unit not been treated: "control outcome"
  - $Y_1(x_i)$  is the potential outcome had the unit been treated: "treated outcome"
- Conditional average treatment effect for unit *i*:  $CATE(x_i) = \mathbb{E}_{Y_1 \sim p(Y_1|x_i)} [Y_1|x_i] - \mathbb{E}_{Y_0 \sim p(Y_0|x_i)} [Y_0|x_i]$
- Average Treatment Effect:

$$ATE = \mathbb{E}_{x \sim p(x)}[CATE \ x)]$$

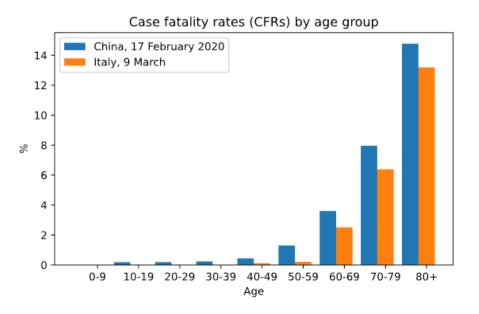
#### Causal inference for COVID19

4

### Causal inference for COVID19

- Example (simplified; for educational purposes only)
  - Understanding case fatality rates (CFR)

Paradox: CFR in Italy reported at 4.3% and CFR in China reported at 2.3%. Yet:



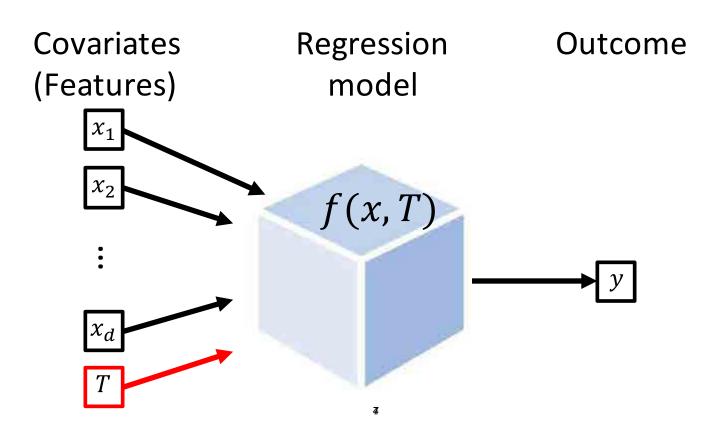
Courtesy of Julius von Kuegelgen & Luigi Gresele. Used with permission.

## Two common approaches for counterfactual inference

Covariate adjustment Propensity scores

#### Covariate adjustment (reminder)

Explicitly model the relationship between treatment, confounders, and outcome:



#### Covariate adjustment (reminder)

- Under ignorability, CATE(x) = $\mathbb{E}_{x \sim p(x)} \left[ \mathbb{E}[Y_1 | T = 1, x] - \mathbb{E}[Y_0 | T = 0, x] \right]$
- Fit a model  $f(x,t) \approx \mathbb{E}[Y_t | T = t, x]$ , then:  $\widehat{CATE}(x_i) = f(x_i, 1) - f(x_i, 0).$

#### Covariate adjustment with linear models

• Assume that:

Blood pressure age medication  $Y_t(x) = \beta x + \gamma \cdot t + \epsilon_t$   $\mathbb{E}[\epsilon_t] = 0$ 

• Then:

 $_{1}(x) - Y_{0}(x)] =$ 

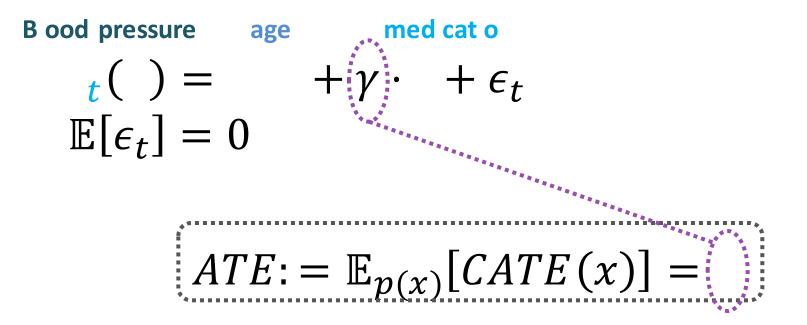
#### Covariate ad ust e t with ear ode<sup>S</sup>

- Assume that:
- B d ressure age medicati  $t() = +\gamma \cdot +\epsilon_t$   $\mathbb{E}[\epsilon_t] = 0$ 
  - The :  $CATE(x) := \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & 0 \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1 & 0 \\ - & - \end{bmatrix} = \mathbb{E}\begin{bmatrix} 1$

$$ATE := \mathbb{E}_{p(x)}[CATE(x)] =$$

#### Covariate ad ustment w<sup>t</sup> linear mode<sup>s</sup>

• Assume t at:



- For causa nference, need to est mate well, not t() Ident<sup>f</sup> icat on, not predict on
- Ma or di ere ce betwee ML and statistics

## W at appens true mode s not linear?

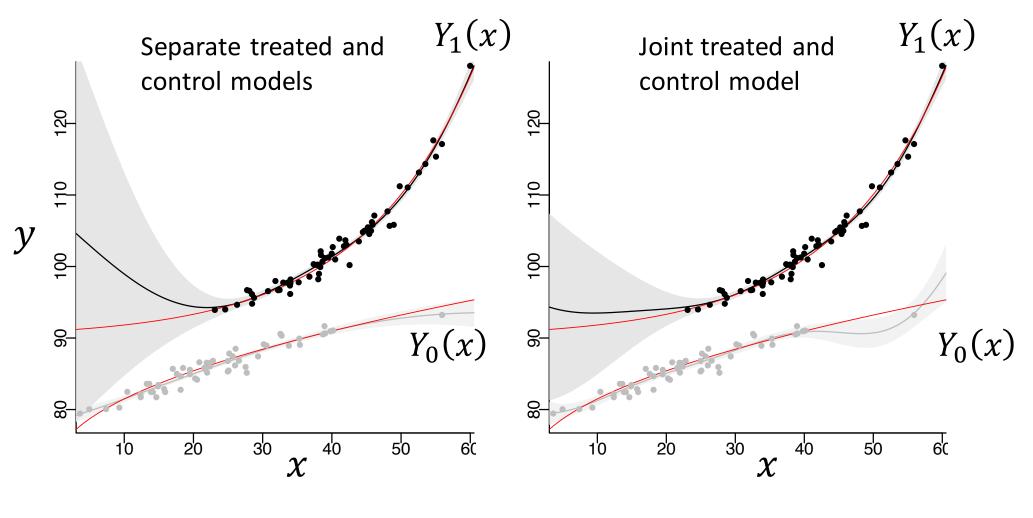
- True data generat ng process,  $x \in \mathbb{R}$ :  $Y_t() = + \cdot t + \cdot x^2$  $ATE = \mathbb{E}[Y_1 - Y_0] = \gamma$
- Hypot esized model:  $\widehat{Y}_t()$   $\widehat{x} + \widehat{\cdot}$

$$\hat{f} = + \underbrace{\int}_{\mathbb{E}} \mathbb{E} [2] \mathbb{E} [2] - \mathbb{E} [2] \mathbb{E}$$

# Covariate adjustment with non-linear models

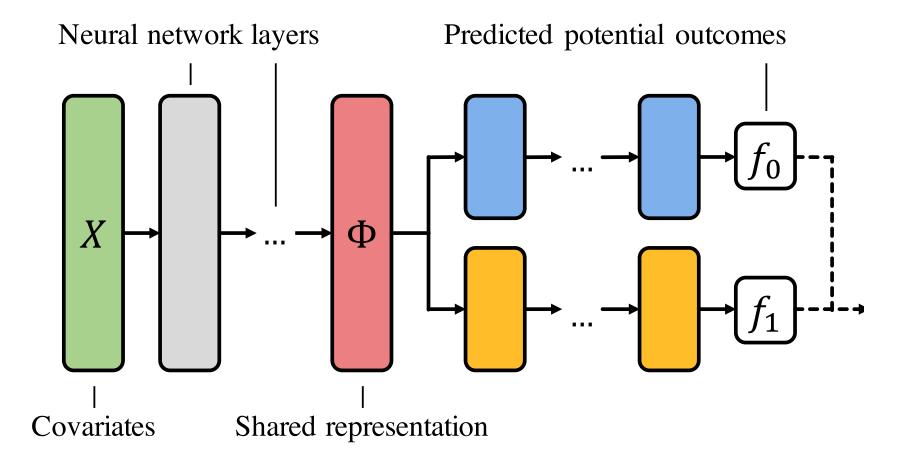
- Random forests and Bayesian trees Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)
- Gaussian processes Hoyer et al. (2009), Zigler et al. (2012)
- Neural networks
  Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016), Lopez-Paz et al. (2016)

#### Example: Gaussian processes



Treated Control

#### Example: Neural networks



Shalit, Johansson, Sontag. *Estimating Individual Treatment Effect: Generalization Bounds and Algorithms*. ICML, 2017 12

### Matching

- Find each unit's long-lost counterfactual identical twin, check up on his outcome
- Used for estimating both ATE and CATE

# Match to nearest neighbor from opposite group

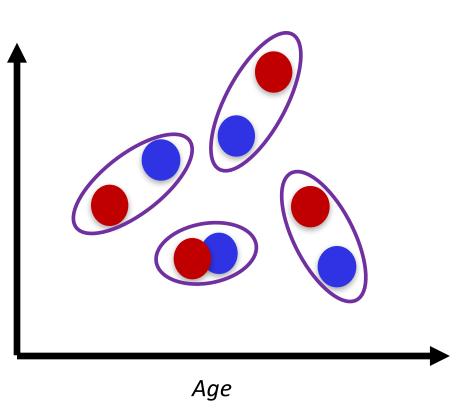
Charleson comorbidity index Treated Control Age

# Match to nearest neighbor from opposite group

Charleson comorbidity index

Treated

Control



#### **1-NN Matching**

- Let  $d(\cdot, \cdot)$  be a metric between x's
- For each *i*, define  $j(i) = \underset{j \ s.t. \ t_j \neq t_i}{\operatorname{argmin}} d(x_j, x_i)$

j(i) is the nearest counterfactual neighbor of i

- $t_i = 1$ , unit *i* is treated:  $\widehat{CATE}(x_i) = y_i - y_{j(i)}$
- $t_i = 0$ , unit *i* is control:

$$\widehat{CATE}(i) = y_{j(i)} - y_i$$

#### **1-NN Matching**

- Let  $d(\cdot, \cdot)$  be a metric between x's
- For each *i*, define  $j(i) = \underset{j \ s.t. \ t_j \neq t_i}{\operatorname{argmin}} d(x_j, x_i)$

j(i) is the nearest counterfactual neighbor of i

- $\widehat{CATE}(x_i) = (2t_i 1)(y_i y_{j(i)})$
- $\widehat{ATE} = \frac{1}{2} \sum_{i=1}^{n} \widehat{CATE}(x_i)$

### Matching

- Interpretable, especially in small-sample regime
- Nonparametric
- Heavily reliant on the underlying metric
- Could be misled by features which don't affect the outcome

#### Covariate adjustment and matching

• Matching is equivalent to covariate adjustment with two 1-nearest neighbor classifiers:  $\hat{Y}_1(x) = y_{NN_1(x)}$ ,  $\hat{Y}_0(x) = y_{NN_0(x)}$ where  $y_{NN_t()}$  is the nearest-neighbor of xamong units with treatment assignment t = 0,1

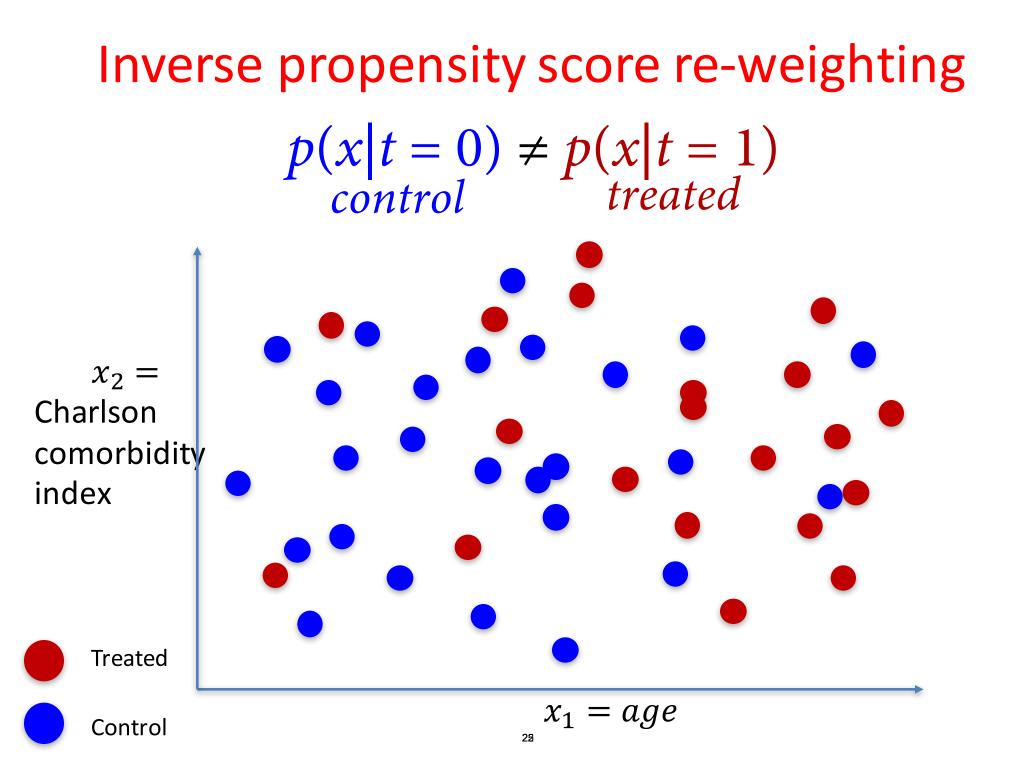
• 1-NN matching is in general inconsistent, though only with small bias (Imbens 2004)

## Two common approaches for counterfactual inference

Covariate adjustment Propensity scores

#### Propensity scores

- Tool for estimating ATE
- Basic idea: turn observational study into a pseudo-randomized trial by re-weighting samples, similar to importance sampling



Inverse propensity score re-weighting  $p(x|t=0) \cdot w_0(x) \approx p(x|t=1) \cdot w_1(x)$ *reweighted control reweighted treated*  $x_2 =$ Charlson comorbidity index Treated  $x_1 = age$ Control 26

#### Propensity score

- Propensity score: p(T = 1|x), using machine learning tools
- Samples re-weighted by the inverse propensity score of the treatment they received

How to calculate ATE with propensity score for sample  $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$ 

1. Use any ML method to estimate  $\hat{p}(T = t | x)$ 

**2.** 
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i=1} \frac{y_i}{\hat{p}(t_i=1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i=0} \frac{y_i}{\hat{p}(t_i=0|x_i)}$$

How to calculate ATE with propensity score for sample  $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$ 

1. Randomized trial p(T = t|x) = 0.5

**2.** 
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i=1} \frac{y_i}{\hat{p}(t_i=1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i=0} \frac{y_i}{\hat{p}(t_i=0|x_i)}$$

How to calculate ATE with propensity score for sample  $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$ 

1. Randomized trial p(T = t|x) = 0.5

**2.** 
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{0.5} - \frac{1}{n} \sum_{i \text{ s.t. } t_i = 0} \frac{y_i}{0.5} =$$

How to calculate ATE with propensity score for sample  $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$ 

1. Randomized trial p = 0.5

2. 
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{0.5} - \frac{1}{n} \sum_{i \text{ s.t. } t_i = 0} \frac{y_i}{0.5} = \frac{2}{n} \sum_{i \text{ s.t. } t_i = 1} y_i - \frac{2}{n} \sum_{i \text{ s.t. } t_i = 0} y_i$$

Propensity scores – algorithm *Inverse probability of treatment weighted estimator* How to calculate ATE with propensity score for sample  $(x_1, t_1, y_1), ..., (x_n, t_n, y_n)$ Sum over  $\sim \frac{n}{2}$  terms 1. Randomized trial p = 0.52.  $A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{0.5}$  $i \text{ s.t. } t_i$ =  $y_i$  $y_i$ i s.t.  $i \, \mathrm{s.t.}$ 

#### Propensity scores - derivation

• How do we derive this estimator?

$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{\hat{p}(t_i = 1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i = 0} \frac{y_i}{\hat{p}(t_i = 0|x_i)}$$

• Recall definition of average treatment effect:

$$ATE = \mathbb{E}_{x \sim p(x)}[Y_1(x)] - \mathbb{E}_{x \sim p(x)}[Y_0(x)]$$

• Naively, using observed data we can estimate  $\mathbb{E}_{x \sim p(x|T=1)}[Y_1(x)] \quad \& \quad \mathbb{E}_{x \sim p(x|T=0)}[Y_0(x)]$ 

• We want:  $\mathbb{E}_{x \sim p(x)}[Y_1(x)]$ 

### Propensity scores - derivation

• We know that:

$$p(x|T = 1) \cdot \frac{p(T = 1)}{p(T = 1|x)} = p(x)$$
s:

• Thus:

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{p}(\boldsymbol{x}|\boldsymbol{T}=1)} \left[ \frac{p(T=1)}{p(T=1 \mid \boldsymbol{x})} Y_1(\boldsymbol{x}) = \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})} [Y_1(\boldsymbol{x})] \right]$$

• We can approximate this empirically as:

$$\frac{1}{n_1} \sum_{i \text{ s.t.} t_i = 1} \left[ \frac{n_1/n}{\hat{p}(t_i = 1 \mid x_i)} y_i = \frac{1}{n} \sum_{i \text{ s.t.} t_i = 1} \frac{y_i}{\hat{p}(t_i = 1 \mid x_i)} \right]$$

(similarly for t<sub>i</sub>=0)

#### Problems with IPW

- Need to estimate propensity score (problem in all propensity score methods)
- If there's not much overlap, propensity scores become non-informative and easily miscalibrated
- Weighting by inverse can create large variance and large errors for small propensity scores

Exacerbated when more than two treatments

#### Many more ideas and methods

- Natural experiments & regression discontinuity
- Instrumental variables

### Many more ideas and methods – Natural experiments

- Does stress during pregnancy affect later child development?
- Confounding: genetic, mother personality, economic factors...
- Natural experiment: the Cuban missile crisis of October 1962. Many people were afraid a nuclear war is about to break out.
- Compare children who were in utero during the crisis with children from immediately before and after

#### Many more ideas and methods – Instrumental variables

- Informally: a variable which affects treatment assignment but not the outcome
- Example: are private schools better than public schools?
- Confounding: different student population, different teacher population
- Can't force people which school to go to

#### Many more ideas and methods – Instrumental variables

- Informally: a variable which affects treatment assignment but not the outcome
- Example: are private schools better than public schools?
- Can't force people which school to go to
- Can randomly give out vouchers to some children, giving them an opportunity to attend private schools
- The voucher assignment is the instrumental variable

#### Summary

- Two approaches to use machine learning for causal inference
  - Predict outcome given features and treatment, then use resulting model to impute counterfactuals (*covariate adjustment*)
  - Predict treatment using features (*propensity score*), then use to reweight outcome or stratify the data
- Consistency of estimates depend on:
  - Causal graph being correct (i.e., no unobserved confounding)
  - Identifiability of causal effect (i.e., overlap)
  - Nonparametric regression is used (or correctly specified model)

### References

- Recent work from ML community: <u>https://sites.google.com/view/nips2018causallearning/</u> and <u>http://tripods.cis.cornell.edu/neurips19\_causalml/</u>
- Recent book on causal inference by Miguel Hernan and Jamie Robins: <u>https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/</u> Recent book on causal inference by Jonas Peters, Dominik Janzing and Bernhard Schölkopf: <u>https://mitpress.mit.edu/books/elements-causal-inference</u> (download PDF for free on left: "Open Access Title")
- Examples of recent papers in this research field: <u>https://arxiv.org/abs/1906.02120</u> <u>https://arxiv.org/abs/1705.08821</u>

https://arxiv.org/abs/1810.02894

MIT OpenCourseWare <a href="https://ocw.mit.edu">https://ocw.mit.edu</a>

#### 6.S897 / HST.956 Machine Learning for Healthcare

Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>