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  Reminder: Causal inference 

Patient, # Intervention, ! 

(including all (e.g. medication, 
confounding ? procedure) 
factors) 

Outcome, " 

High dimensional Observational data 
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Reminder: Potential Outcomes 

• Each unit (individual) �" has two potential outcomes: 
– �$(�") is the	 potential	outcomehad the	 unit not been treated: 
“control outcome” 

– �'(�") is the potential outcome had the unit	 been treated: 
“treated outcome” 

• Conditional average treatment effect for unit �: 
���� �" = �/0~2(/0|45) [�'|�"] − �/:~2(/:|45)[�$|�"] 

• Average Treatment Effect:
��� = �4~2(4) ���� � 
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Causal inference for COVID19 

• 

4



   

     

           
   

Causal inference for COVID19 

• Example (simplified; for educational purposes only) 
– Understanding case fatality rates (CFR) 

Paradox: CFR in Italy reported at 4.3% and CFR in China 
reported at 2.3%. Yet: 

�ůƲƖƪěƞǑʅůĳʅcƲŘŀƲƞʅǊůţʅeƲěĴěŘĴěţʅʾʅgƲŀĴŀʅFƖěƞěŘěɐʅÂƞěĔʅǋŀƪĻʅƓěƖšŀƞƞŀůţɐ 
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Two common approaches for counterfactual 
inference 

Covariate adjustment 
Propensity scores 

3



	

	 	

	 	 	 	 	
	 	 	

   

     
    

   
  

 

 

 

Covariate adjustment (reminder) 

Explicitly model the relationship between 
treatment, confounders, and outcome: 

Covariates Regression Outcome 
(Features) model 

�' 

�; 

�< 

� 

…
 

�(�, �) 
� 
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Covariate adjustment (reminder) 

• Under ignorability,
���� � = 

� = 1, � − � �$ � = 0, � �4~2 4 � �' 

• Fit a model � �, � ≈ � �D � = �, � ,	then: 
J���� �" = � �", 1 − �(�", 0). 

58



	 	 	 	

	

	

	 	

	

	 	

     

 
 

 

    

   
 

        
�[(�� + � + �') − �� + �$ ] = �

Covariate adjustment with linear models 

• Assume that: 
Blood pressure age medication 

�D � = �� + � ⋅ � + �D 
� �D = 0 

• Then: 
� − �$ � ] =' 
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Covariate adjustment with non-linear 
models 

• Random forests and Bayesian trees 
Hill (2011), Athey &	 Imbens (2015), Wager & Athey (2015) 

• Gaussian processes 
Hoyer et al. (2009), Zigler et al. (2012) 

• Neural networks 
Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016), 
Lopez-Paz et al. (2016) 

13



	 	

	 	 	 	 	

	 	 	
	

	 	 	
	

   

     

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

   
  

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
  

 

 

 

 

 

 
      

GP−Independent GP−Grouped

Example: Gaussian processes 
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Separate treated and 
control models 
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Learning objecti

Inte

Example: Neural networks 

Neural network layers Predicted potential outcomes 

" Φ 

… %& 

… 

… %' 

Covariates Shared representation 

Shalit,	 Johansson,	 Sontag.	 Estimating Individual Treatment Effect: Generalization 
Bounds and Algorithms.	 ICML, 2017 12



	 	 	 	
	 	 	 	 	

	 	 	 	 	 	

    
      

      

Matching 

• Find each unit’s long-lost counterfactual 
identical	 twin, check up on his outcome 

• Used for estimating both ATE and CATE 

13



	 	 	 	 	
	

 
 

 

 

  

Match to nearest neighbor from 
opposite group 

Charleson 
comorbidity 
index 

Treated 

Control Age 
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Match to nearest neighbor from 
opposite group 

Charleson 
comorbidity 
index 

Treated 

Control Age 
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1-NN	 Matching 

• Let � ⋅,⋅ be a metric between	 �’s 
• For each �,	 define � � = argmin �(� , �")_ 

_ `.D. DabD5 
� � is the nearest counterfactual	 neighbor of � 

• �" = 1,	 unit � is treated: 
J���� �" = �" − �_ " 

• �" =0,	 unit � is control: 
J���� " = �_(") − �" 

1619



	 	 	 	

	 	 	
	 		 	

	 	 	 	 	

 

       

         
  

         

      

    
 

1-NN	 Matching 

• Let � ⋅,⋅ be a metric between	 �’s 
• For each �,	 define � � = argmin �(� , �")_ 

_ `.D. DabD5 
� � is the nearest counterfactual	 neighbor of � 

J• ���� �" = (2�" − 1)(�"−�_ " ) 
'J = d J• ��� ∑"f' ���� �" 

1720



	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	

	

 

    

     

       
 

Matching 

• Interpretable, especially in small-sample regime 

• Nonparametric 
• Heavily reliant on the underlying metric 
• Could be misled by features which don’t affect 
the outcome 

18



	 	 	

	 	 	 	 	
	 	 	 	

	
	 	 	 	 	
	 	 	

	 	 	 	
	 	 	 	

    

     
    

   
      

 

 
      

    
   

     
      

Covariate adjustment and matching 

• Matching is equivalent to covariate adjustment 
with two 1-nearest neighbor classifiers:
�g' � = �hh0 4 ,	 �g$ � = �hh: 4 

where �hhi is the nearest-neighbor of � 
among units	 with treatment assignment

� = 0,1 

• 1-NN	 matching is in general inconsistent, 
though only	 with small bias (Imbens 2004) 

1922



	 	 	 	 	

	 	
	

     
 

  
  

Two common approaches for counterfactual 
inference 

Covariate adjustment 
Propensity scores 

20



	 	 	
	 	 	 	 	 	

	 	 	
	 	 	 	

   

      
   

    

Propensity	 scores 

• Tool for estimating ATE 
• Basic idea: turn observational study into a 
pseudo-randomized trial by re-weighting 
samples, similar to importance sampling 

21



	 	 	

	

  

   

  
  

  
 

 
 

 

 

p(x|t = 0) ≠ p(x|t = 1)
Inverse propensity score re-weighting 

control treated 

�; = 
Charlson 
comorbidity 
index 

Treated 

Control �' = ��� 
2225



	 	 	

	

  

   

  
  

  
 

 
 

 

 

p(x|t = 0) · w
Inverse propensity score re-weighting 

0(x) ≈ p(x|t = 1) · w1(x) 
reweighted control reweighted treated 

�; = 
Charlson 
comorbidity 
index 

Treated 

Control �' = ��� 
2326



	 	
	 	 	

	 	 	 	 	
	 	 	 	 	

     
    

     
     

Propensity	 score 

• Propensity score: � � = 1 � , 
using machine learning tools 

• Samples re-weighted by the inverse propensity 
score of the treatment they received 

24



	 	
	 	 	 	 	

	 	 	 	 	 	
	 	

	 	 	 	 	 	

      

       

           

       

  
  

         

Propensity scores – algorithm 
Inverse probability of treatment weighted estimator 

How to calculate ATE with propensity score 

for sample �', �', �' , … , (�d, �d, �d) 

1. Use any ML method to estimate �V � = � � 

X X1 yi 1 yiˆ2. AT E = � 
n p̂(ti = 1|xi) n p̂(ti = 0|xi)i s.t. ti=1 i s.t. ti=0 

25



	 	
	 	 	 	 	

	 	 	 	 	 	
	 	

	 	

      

       

           

      

  
  

         

Propensity scores – algorithm 
Inverse probability of treatment weighted estimator 

How to calculate ATE with propensity score 

for sample �', �', �' , … , (�d, �d, �d) 

1. Randomized trial �(� = �|�) = 0.5 

X X1 yi 1 yiˆ2. AT E = � 
n p̂(ti = 1|xi) n p̂(ti = 0|xi)i s.t. ti=1 i s.t. ti=0 

26



	 	
	 	 	 	 	

	 	 	 	 	 	
	 	

	 	

      

       

           

      

  
   

   
      

Propensity scores – algorithm 
Inverse probability of treatment weighted estimator 

How to calculate ATE with propensity score 

for sample �', �', �' , … , (�d, �d, �d) 

1. Randomized trial �(� = �|�) = 0.5 

X X1 yi 1 yiˆ2. AT E = � = 
n 0.5 n 0.5 

i s.t. ti=1 i s.t. ti=0 
X X 

27



	 	
	 	 	 	 	

	 	 	 	 	 	
	 	

	 	

      

       

           

    

  
  

   
      

 
  

      

Propensity scores – algorithm 
Inverse probability of treatment weighted estimator 

How to calculate ATE with propensity score 

for sample �', �', �' , … , (�d, �d, �d) 

1. Randomized trial � = 0.5 

X X1 yi 1 yiˆ2. AT E = � = 
n 0.5 n 0.5 

i s.t. ti=1 i s.t. ti=0 
X X2 2 

yi � yi 
n n 

i s.t. ti=1 i s.t. ti=0 

28
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Propensity scores – algorithm 
Inverse probability of treatment weighted estimator 

How to calculate ATE with propensity score 

for sample �', �', �' , … , (�d, �d, �d) 

1. Randomized trial � = 0.5 

X 

i s.t. ti=1 i s.t. ti=0 
n 0.5 0.5 
1 

Sum over ~ 
� 

�
terms 

yi Xyi 1ˆ2. AT E = � = 

X X2 2 
yi � yi 

n n 
i s.t. ti=1 i s.t. ti=0 

29



  

     

     

     

Propensity scores - derivation 

• How do we derive this estimator? 

X X1 yi 1 yiˆ
AT E = � 

n p̂(ti = 1|xi) n p̂(ti = 0|xi)i s.t. ti=1 i s.t. ti=0 

• Recall definition of average treatment effect: 

AT E = Ex⇠p(x)[Y1(x)] � Ex⇠p(x)[Y0(x)] 

• Naively, using observed data we can estimate 

Ex⇠p(x|T =1)[Y1(x)] & Ex⇠p(x|T =0)[Y0(x)] 

33
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Propensity scores -• We want: Ex⇠p(x)[Y1(x)] 
derivation 

• We know that: 

p(T = 1)
p(x|T = 1) · = p(x) 

p(T = 1|x)• Thus: 

 
p(T = 1)Ex⇠p(x|T =1) Y1(x) = Ex⇠p(x)[Y1(x)] 

p(T = 1  | x) 
• We can approximate this empirically as: 

 
1 X n1/n 1 X yi yi = 
n1 p̂(ti = 1  | xi) n p̂(ti = 1  | xi)i s.t.ti=1 i s.t.ti=1 

(similarly for ti=0) 
34



	 	

	 	 	 	 	 	
	 	 	
	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	

   

      
   

      
    

      
      

     

Problems with IPW 

• Need to estimate propensity score (problem in 
all propensity score methods) 

• If there’s not much overlap, propensity scores 
become non-informative and easily mis-
calibrated 

• Weighting by inverse can create large variance 
and large errors	 for small propensity scores 
– Exacerbated when more than two treatments 

36



	 	 	 	

	 	 	

	

     

   

 

Many more ideas and methods 

• Natural experiments & regression 
discontinuity 

• Instrumental variables 

37



	 	 	 	 	
	

	 	 	 	 	 	

	 	
	

	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	

      

   
 

      
       

     
       

      

Many more ideas and methods – 
Natural experiments 

• Does stress during pregnancy affect later child 
development? 

• Confounding: genetic,	 mother personality, 
economic factors… 

• Natural experiment: the Cuban missile crisis of 
October 1962. Many people were afraid a nuclear 
war is about to break out. 

• Compare children who were in utero during the
crisis with children from immediately before and 
after 

38



	 	 	 	 	
	

	 	 	 	 	
	 	 	 	

	 	 	 	 	 	

	 	 	
	 	

	 	 	 	 	 	 	

     
    

      

   
  

       

Many more ideas and methods – 
Instrumental	 variables 

• Informally: a variable which affects treatment 
assignment but not the outcome 

• Example: are private schools better than public 
schools? 

• Confounding: different student population, 
different teacher population 

• Can’t force people which school to go to 

39



	 	 	 	 	

	 	 	 	 	
	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

     
    

      

       
       

      

     

Many more ideas and methods – 
Instrumental	 variables 

• Informally: a variable which affects treatment 
assignment but not the outcome 

• Example: are private schools better than public 
schools? 

• Can’t force people which school to go to 
• Can randomly give out vouchers to some children,
giving	 them an opportunity to attend private 
schools 

• The voucher assignment is the instrumental 
variable 

40



       
 

      
      

 
      

      

     
      

 

Summary 

• Two approaches to use machine learning for
causal inference 
– Predict outcome given features and treatment, then

use resulting model to impute counterfactuals
(covariate adjustment) 

– Predict treatment using features (propensity score),
then use to reweight outcome or stratify the data 

• Consistency of estimates depend on: 
– Causal graph being correct (i.e., no unobserved

confounding) 
– Identifiability of causal effect (i.e., overlap) 
– Nonparametric regression is used (or correctly

specified model) 
40
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