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HST.956, 6.S897 

Lecture 24: Robustness to dataset shift 
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Course announcements 

• Projects 
– Poster session 
– Send posters to print 
– Final report due 

• Grading 
– PS5 & PS6 will be graded by early next week 
– Please let us know immediately if you see any mistakes 
with grading 
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Machine learning is brittle 

• So, you train your ML model and do a 
prospective evaluation	 at your institution	 •
all looks	 good! 

• What could go wrong at time of deployment? 
– Adversarial perturbations of inputs 
– Natural changes in the data	 (e.g. from transferring 
to a new place, or non-stationarity) 

Machine learning breaks when 
test	 distribution ≠	 train distribution 
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Machine	 learning is brittle: adversarial 
perturbations 

Considera deep neural network used	for image classification 

Input: Output: 

© Neural Information Processing Systems Foundation, Inc.. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

[Krizhevsky,	 Sutskever,	 Hinton. “ImageNet Classification with Deep Convolutional 
Neural Networks”, NIPS ’12] 4

https://ocw.mit.edu/help/faq-fair-use/
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks


	
	 	

	 	 	 	

	 	 	 	 	 	 	 	

Machine	 learning is brittle: adversarial 
perturbations 

Correctly 
classified as 

a	 Dog 
Courtesy of Christian Szegedy et al. Used under CC BY. 

[Szegedy et al., “Intriguing properties of neural networks”, ICLR 2014] 5

https://arxiv.org/abs/1312.6199


	

	 	 	 	

	 	

	 	 	 	 	 	 	 	

Machine	 learning is brittle: adversarial 
perturbations 

+ 

Original Noise (not 
image random) 

Courtesy of Christian Szegedy et al. Used under CC BY. 

[Szegedy et al., “Intriguing properties of neural networks”, ICLR 2014] 6

https://arxiv.org/abs/1312.6199


	 	 	 	

		 	 	

	 	 	 	 	 	 	 	

Machine	 learning is brittle: adversarial 
perturbations 

+ = 

Original Noise (not Classified 
image random) as	 Ostrich! 

Courtesy of Christian Szegedy et al. Used under CC BY. 

[Szegedy et al., “Intriguing properties of neural networks”, ICLR 2014] 7

https://arxiv.org/abs/1312.6199


	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

Machine	 learning is brittle: adversarial 

© Finlayson et al. All rights reserved. 
This content is excluded from our 
Creative Commons license. 
For more information, see https:// 
ocw.mit.edu/help/faq-fair-use/ 

perturbations 

[Finlayson et al., “Adversarial Attacks Against Medical Deep Learning Systems”, 
Arxiv 1804.05296, 2018] 8

https://ocw.mit.edu/help/faq-fair-use/


	 	 	

	 	 	 	 	 	

	 	  

	 	 	 	 	
	 	 	

	 	 	 	
	 	 	

Machine	 learning is brittle: natural 
changes in the data 

Top 100	 lab measurements over time 

La
bs

 

Time (in months, from 1/2005 up to	 1/2014) 

→ Significance of	 features may change over time 
(Figure from Lecture 5) 

[Figure credit: Narges Razavian] 
© Narges Razavian. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Machine	 learning is brittle: natural 
changes in the data 

MGH UCSF 

Model 

? 

[Figure adopted from Jen Gong and Tristan Naumann] 
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Outline for lecture 

1. Building population-level	 checks into 
deployment/transfer 

2. Machine learning in anticipation of dataset 
shift 
– Transfer learning 

– Defenses against adversarial attacks 
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Outline for lecture 

1. Building population-level	 checks into 
deployment/transfer 

2. Machine learning in anticipation of dataset 
shift 
– Transfer learning 

– Defenses against adversarial attacks 
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Transfer learning 
• We have a lot of data from p(x,y)	 and a	 little data 
from q(x,y) 

• How can we	 quickly adapt? 
1. Linear models: original representation,	 modify

weights 
2. Linear models: manually choose a good shared

representation 
3. Deep models: re-use part of the learned

representation,	 fine-tune 
4. Deep models: automatically find a good shared

representation 

13



	
	 	 	 	 	 	 	 	
	
	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

Transfer learning 
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Transfer learning for linear models 

• Learn wold using data drawn	 from p(x,y) 
• Then, when learning using data from q, instead 
of using typical L1 or L2 regularization, use: 

or||w � w
old

||2 ||w � w
old

||
1

2 

• Same as what we previously discussed for 
multi-task learning in the context of disease 
progression	 modeling 

15



	
	 	 	 	 	 	 	 	
	
	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

Transfer learning 
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Predicting Clinical Outcomes Across
Changing Electronic Health Record Systems 

Model 

? 
Jen J. Gong, Tristan Naumann, Peter Szolovits, John V. Guttag
Computer Science and Artificial Intelligence Laboratory, MIT 

KDD 2017 
17



     Applying analytics across changing EHR
systems is challenging 

EHR 1 EHR 2 
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     Applying analytics across changing EHR
systems is challenging 

EHR 1 EHR 2 

1. The same conceptual items might be 
mapped to different encodings. 
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     Applying analytics across changing EHR
systems is challenging 

EHR 1 EHR 2 

1. The same conceptual items might be 
mapped to different encodings. 
2. Old concepts are removed. 
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     Applying analytics across changing EHR
systems is challenging 

EHR 1 EHR 2 

1. The same conceptual items might be
mapped to different encodings. 
2. Old concepts are removed.
3. New concepts are added. 

… 
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We can learn models using only EHR 2 

EHR 1 EHR 2 

But this results in throwing away valuable data. 
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We can learn models on EHR 1 and apply them to
EHR 2 

EHR 1 EHR 2 

But concepts important in EHR 1 may not appear in EHR 2,
and vice versa. 
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Or, we can develop a model on only the
intersection of the elements in EHR 1 and EHR 2 

EHR 1 EHR 2 

But this could remove the majority of clinical concepts in both 
EHRs from our model. 
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Solution: Map semantically similar items to a
shared vocabulary 

EHR 1 EHR 2 

Identify semantically equivalent concepts 
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Predictive Models 

Outcomes: (1) In-Hospital Mortality, (2) Prolonged Length of Stay 
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Item IDs 

Text 
description 

BOE 

Bag-of-events (BOE) 
Example patient timeline 

Hospital Minutes from 
ICU Admission 

1046:	 ’Pain Present’ 25:‘Heparin’ 

5814:'CVP Alarm (Lo/Hi)’ 

2 
Admission 

5814 55 1046 25 

0 22 82 62 

Enter 
s ICU 

central venous pressure urine out 
(CVP) alarm foley pain present heparin 

1 0 1 1 
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From EHR-specific events to a shared
vocabulary 

cTAKES1 
ischemic hemorrhagic	 (Clinical Text Analysis 

stroke stroke	 Knowledge Extraction System) 

1 2 …	 

C0948008 C0553692 C0475224 C0333275 C0038454 
ischemic stroke hemorrhagic stroke ischemic hemorrhagic stroke 

1	 2	 1	 2	 3	 …	 

[1] Savova, G. K. et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation, 
and applications. JAMIA, 2010. 
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Data & Experimental Setup 

• MIMIC-III dataset: 
• Publicly available data from 2 EHR systems (CareVue and MetaVision) 

from ICUs. 
• “Item IDs” encode different events (e.g., lab tests, vital signs,

medications, other charted observations). 
• Some “Item IDs” are shared between the two EHRs, but the majority are 

not 

• Models 
• L2-regularized Logistic Regression, 5-fold cross-validation on training

set to determine best hyperparameters 
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Three Experiments 

1. Show that a Bag-of-Events feature representation is useful in
predicting clinical outcomes within each EHR version. 

2. Compare performance of semantically equivalent concepts (CUIs)
to EHR-specific Item IDs within EHR versions. 

3. Compare performance of semantically equivalent concepts (CUIs)
to EHR-specific Item IDs across EHR versions. 
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Does BOE feature representation have predictive 
value? 

Simplified Acute Physiology Score (SAPS-II): Uses statistics about patient physiology (e.g., 
heart rate, blood pressure, urine output). 
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What is the impact of mapping BOEs to CUIs within
single EHRs? 
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What happens when we apply models across EHRs? 

TrainDB TestDB TrainDB TestDB 

Baseline 1: all Baseline 2: common 

33



What happens when we apply models across EHRs?        

34



	
	 	 	 	 	 	 	 	
	
	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

Transfer learning 
• We have a lot of data from p(x,y)	 and a	 little data 
from q(x,y) 

• How can we	 quickly adapt? 
1. Linear models: original representation,	 modify

weights 
2. Linear models: manually choose a good shared

representation 
3. Deep models: re-use part of the learned

representation,	 fine-tune 
4. Deep models: automatically find a good shared

representation 

35



	 	 	 	

	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 

 

 

Transfer learning for feedforward 
networks 

• Widely used technique in computer vision: 
• Take a pre-trained model, chop off the top few layers, and 

train a new shallow model on the induced representation 

conv3 

fc1 

loss 

fc2 

softmax 

TRANSFER 

features 

conv3 

conv2 

fc1 

conv2 

conv1conv1 

Target data and labels 

Shallow classifier (e.g. SVM) 

Data and labels (e.g. ImageNet) 

© TelebcomBCN. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

Slide acknowledgement:TelecomBCN 36

https://ocw.mit.edu/help/faq-fair-use/
http://imatge-upc.github.io/telecombcn-2016-dlcv/slides/D2L5-transfer.pdf


	 	 	 	

	 	 	 	

Transfer learning for feedforward 
networks 

[Adam Yala,	 MIT 6.S897/HST.956 Lecture 13, 2019.] 
37



Transfer learning for recurrent neural 
networks 

• Naïve encoding of inputs for a RNN	 might use a	 one-hot encoding 

st 2 Rd 

xt 2 {0, 1}|V | 

• An example of a (simplified) recurrent unit: 

• Challenge: how do we make hidden	 dimension	 d	 large, yet not 
overfit with rare words? 

“class” 

	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	
	 	

dimension 
d ⇥ |V | 
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Transfer learning for recurrent neural 
networks 

• Instead, do linear transformation of words prior to	 feeding to	 RNN 

st 2 Rd st 2 Rd 

k ⇥ |V | 

	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	
	 	 	 	 	 	 	

	 	 	 	 	

x = W ext x 2 Rk0 0
xt 2 {0, 1}|V | 

t t 

“class” 
xt 2 {0, 1}|V | 

“class” 

• Each column of We can be thought of as a word embedding,	 which 
can be trained end-to-end 

• Can use pre-trained word embeddings, coming from learning a 
language model	 or	 another	 classification problem with a much 
larger	 dataset 

39



	 	 	 	 	 	 	 	 	 	 	
	

	 	 	

	 	 	 	 	Transfer learning for recurrent neural 
networks 

Application: clinical conceptextraction 

Method 

i2b2 2010 i2b2 2012 
Semeval 2014 

Task 7 
Semeval 2015 

Task 14 
General MIMIC General MIMIC General MIMIC General MIMIC 

w2v 
GloVe 

fastText 
ELMo 

BERTBASE 

BERTLARGE 

BioBERT 

- 82.67 
84.08 85.07 
83.46 84.19 
83.83 87.80 
84.33 89.55 
85.48 90.25 
84.76 -

- 73.77 
74.95 75.27 
73.24 74.83 
76.61 80.5 
76.62 80.34 
78.14 80.91 
77.77 -

- 72.49 
70.22 77.73 
69.87 76.47 
72.27 78.58 
76.76 80.07 
78.75 80.74 
77.91 -

- 73.96 
72.13 76.68 
72.67 77.85 
75.15 80.46 
77.57 80.67 
77.97 81.65 
79.97 -

Table 3: Test set comparison in exact F-measure of embedding methods across tasks. 
© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

[Si, Wang, Xu, Roberts. Enhancing Clinical Concept Extraction with Contextual Embedding. 
arXiv:1902.08691, Feb 2019] 

40
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Transfer learning for recurrent neural 
networks 

Can we use these 
techniques for 
longitudinal	 patient 
records (non-textual 
data)? 

Patient: 
time 

Medical Claims: 
-ICD9 diagnosis code 
-CPT code (procedure) 
-Specialty 
-Location of service 
-Date of Service 

Medications: 
-NDC code (drug 
name) 
-Days of supply 
-Quantity 
-Service Provider ID 
-Date of fill 

10	 years 

Lab Tests: 
-LOINC code (urine or 
blood	 test name) 
-Results (actual values) 
-Lab ID 
-Range high/low-Date 

41



	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	

	 	

	
	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

Transfer learning for recurrent neural 
networks 

• Can we embed all 3 million+ concepts in the UMLS (Unified
Medical Language System), 140,000 ICD-10-CM diagnosis
and procedure codes, 360,000 NDC medication codes…? 

250.00	 (Diabetes-non	 insulin	 dependent) 
790.29	 (Other abnormal glucose) 

Metformin 

714.0	 (Rheumatoid arthritis) 
710.0	 (Systemic lupus erythematosus) 

X1 

X2 

Insulin 

Hydroxychloroquine Sulfate 
Methrotrexate 

443.0	 (Raynaud’s syndrome) 

[Choi, Chiu, Sontag, Learning Low-Dimensional Representations of Medical Concepts, AMIA CRI 2016; 
Choi, Bahadori et al., Multi-Layer Representation Learning for Medical Concepts, KDD 2016; 
Beam et al.,	 Clinical Concept Embeddings Learned from Massive Sources..., arXiv:1804.01486, 2018] 42



	
	 	 	 	 	 	 	 	
	
	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

Transfer learning 
• We have a lot of data from p(x,y)	 and a	 little data 
from q(x,y) 

• How can we	 quickly adapt? 
1. Linear models: original representation,	 modify

weights 
2. Linear models: manually choose a good shared

representation 
3. Deep models: re-use part of the learned

representation,	 fine-tune 
4. Deep models: automatically find a good shared

representation 

43



	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 

Automatically find a good shared 
representation 

• Guided by learning	 theory (Ben-David et	 al. ‘06), recent	 work 
shows	 how to do domain adaptation without labels in target set: 

© Ganin et al. All rights reserved. This content is excluded from our Creative Commons license. For 
more information, see https://ocw.mit.edu/help/faq-fair-use/ 

Ganin et al., Domain-Adversarial Training of Neural Networks. JMLR ‘16 44

https://ocw.mit.edu/help/faq-fair-use/
https://arxiv.org/abs/1505.07818


	 	

	 	

	 	 	 	 	

	
	 	 	

Outline for lecture 

1. Building population-level	 checks into 
deployment/transfer 

2. Machine learning in anticipation of dataset 
shift 
– Transfer learning 

– Defenses againstadversarialattacks 
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Towards Adversarially Robust Models 
“pig” 

“pig”	 (91%) “airliner”	 (99%) 

+ 0.005 x = 

Acknowledgement: Slides from Aleksander Madry,	 MIT 

Pig image © source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

46

https://ocw.mit.edu/help/faq-fair-use/


			
	

	 	

	

	

	 	 	 	 	

		

	 	 	 	
	 	 	 	

	 	 	 	

	 	  

Where Do Adversarial Examples Come From?
Differentiable To get an adv. example 

Goal of Model Parameters Input Correct Label 
training:

���� ���� �, � , � 

In
pu
t
� Output 

Parameters � 

Can use gradient descent 
method to find good � 

Graphs © sources unknown. All rights reserved. 
This content is excluded from our Creative 
Commons license. For more information, seeSlide credit: Aleksander Madry https://ocw.mit.edu/help/faq-fair-use/

Used with permission. 47

https://ocw.mit.edu/help/faq-fair-use/


		

	 	

	

	

	 	 	 	 	

	 	 	 	
	 	 	 	

	 	 	 	

	 	  

����

Where Do Adversarial Examples Come From? 

Goal of 
training: 

Can use gradient descent 
method to find good � 

���� �, � + �, � 

Differentiable 

In
pu
t
� Output 

Parameters � 

To get an adv. example 

Graphs © sources unknown. All rights reserved. 
This content is excluded from our Creative 
Commons license. For more information, seeSlide credit: Aleksander Madry https://ocw.mit.edu/help/faq-fair-use/

Used with permission. 48

https://ocw.mit.edu/help/faq-fair-use/


		

	 	

	

	

	 	 	 	 	

	 	 	 	
	 	 	

	 	 	 	

	 	

	 	

	 	

	 	

	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	
	 	

	 	  

method to find bad �
Can use gradient descent 

This choice is important 
(but we put it aside) 

In any case: We have to confront 
(small)	 ℓ2-norm perturbations 

���� ���� �, � + �, � 

Goal of 
training: 

Differentiable 

In
pu
t
� Output 

Parameters � 

To get an adv. example 
Where Do Adversarial Examples Come From? 

Which � are allowed? 

Examples: � that	 is small wrt 

• ℓ2-norm 

• Rotation and/or translation 

• VGG feature perturbation 

• (add the perturbation you need here) 

Graphs © sources unknown. All rights reserved. 
This content is excluded from our Creative 
Commons license. For more information, seeSlide credit: Aleksander Madry https://ocw.mit.edu/help/faq-fair-use/

Used with permission. 49

https://ocw.mit.edu/help/faq-fair-use/


	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	

	

	 	

Towards ML Models that Are Adv. Robust 
[M	 Makelov Schmidt Tsipras Vladu 2018] 

Key observation: Lack of adv. robustness is NOT at odds with 
what we currently want our ML models to achieve 

Standard generalization: �(5,6)~9 [���� �, �, � ] 
Adversarially robust 

But: Adversarial noise is a “needle in a haystack” 

Slide credit: Aleksander Madry 
Used with permission. 50



	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	
	

	 	 	 	 	 	 	 	

	 	

Towards ML Models that Are Adv. Robust 
[M	 Makelov Schmidt Tsipras Vladu 2018] 

Key observation: Lack of adv. robustness is NOT at odds with 
what we currently want our ML models to achieve 

Standard generalization: �(5,6)~9 [��� ���� �, � + �, � ] 
�∈� 

Adversarially robust 

But: Adversarial noise is a “needle in a haystack” 

Slide credit: Aleksander Madry 
Used with permission. 51



	 	 	 	 	 	
	 	

	 	

	 		

	 	 		 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	

	 	 	
	 	 	 	

	 	

So, now, it is “just” about the optimization

Towards ML Models that Are Adv. Robust 
[M Makelov Schmidt Tsipras Vladu 2018] 

Resulting training primitive: 

B E∈F 
min max ���� �, � + �, � 

Finding a robust model Finding a “bad” perturbation 

To improve the model: Train on perturbed	 inputs 
(aka as “adversarial training” [Goodfellow Shlens Szegedy ‘15]) 

Does this work? Yes! (In practice) 
But certain care is required 

Slide credit: Aleksander Madry 
Used with permission. 52



	 	 	 	 	

	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	

	 	 	

	 	

	 	 	

	

	 	

How do we know this really works? 
→ Seems to be a recurring problem… 

Robustness by 
obscurity/complexity 
just does NOT work 

→ Apply the standard security methodology: 
• Evaluate with multiple adaptive attacks 

(see robust-ml.org)
• Use public security challenges 

→ Use formal verification (where feasible): 
• There is a steady progress on scaling these techniques up 

[Katz et al ‘17,	 Wong Kolter ’18,	 Tjeng et al ’18,	 Dvijotham et al ‘18,	 Xiao Tjeng Shafiullah M ‘18] 

Tweet © Anish Athalye. All rights reserved. This content is excluded Slide credit: Aleksander Madry from our Creative Commons license. For more information, see Used with permission. 
https://ocw.mit.edu/help/faq-fair-use/ 
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https://ocw.mit.edu/help/faq-fair-use/
https://robust-ml.org


 
 

 

            

MIT OpenCourseWare 
https://ocw.mit.edu 

6.S897 / HST.956 Machine Learning for Healthcare 
Spring 2019 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

54

https://ocw.mit.edu
https://ocw.mit.edu/terms
https://ocw.mit.edu/terms

	cover-slides.pdf
	cover_h.pdf
	Blank Page





