Machine Learning for Healthcare HST.956, 6.S897

Lecture 24: Robustness to dataset shift

David Sontag

HEALTH SCIENCES & TECHNOLOGY

Course announcements

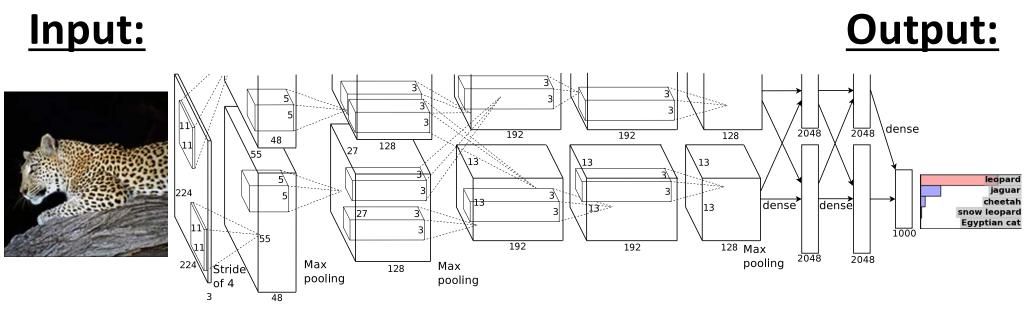
- Projects
 - Poster session
 - Send posters to print
 - Final report due
- Grading
 - PS5 & PS6 will be graded by early next week
 - Please let us know immediately if you see any mistakes with grading

Machine learning is brittle

- So, you train your ML model and do a prospective evaluation at your institution → all looks good!
- What could go wrong at time of deployment?
 - Adversarial perturbations of inputs
 - Natural changes in the data (e.g. from transferring to a new place, or non-stationarity)

Machine learning breaks when test distribution ≠ train distribution

Consider a deep neural network used for image classification



© <u>Neural Information Processing Systems Foundation, Inc</u>.. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

[Krizhevsky, Sutskever, Hinton. "ImageNet Classification with Deep Convolutional Neural Networks", NIPS '12] 4

Correctly classified as a Dog

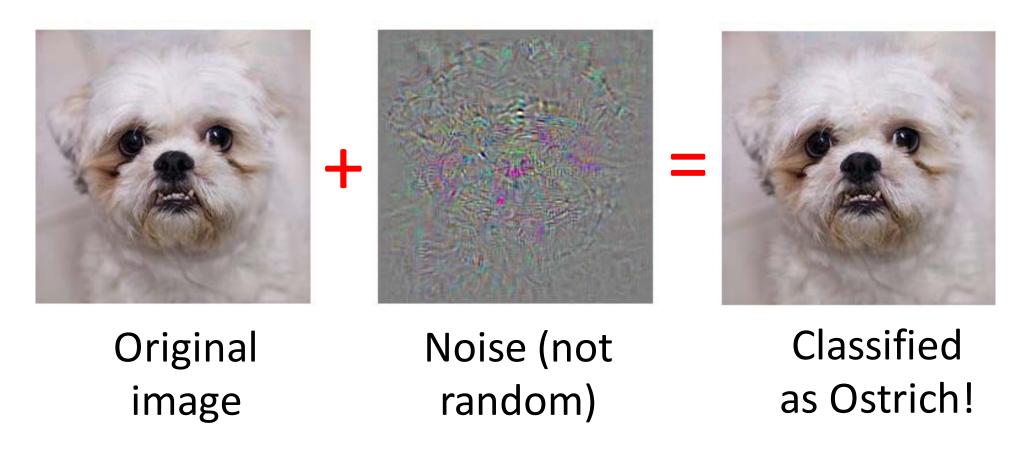
Courtesy of Christian Szegedy et al. Used under CC BY.

[Szegedy et al., "Intriguing properties of neural networks", ICLR 2014]

Original image Noise (not random)

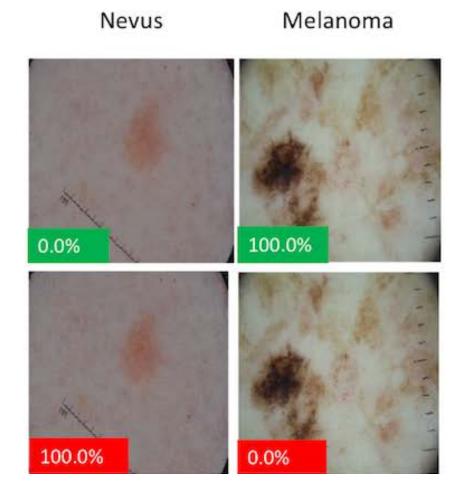
Courtesy of Christian Szegedy et al. Used under CC BY.

[Szegedy et al., "Intriguing properties of neural networks", ICLR 2014]



Courtesy of Christian Szegedy et al. Used under CC BY.

[Szegedy et al., "Intriguing properties of neural networks", ICLR 2014]

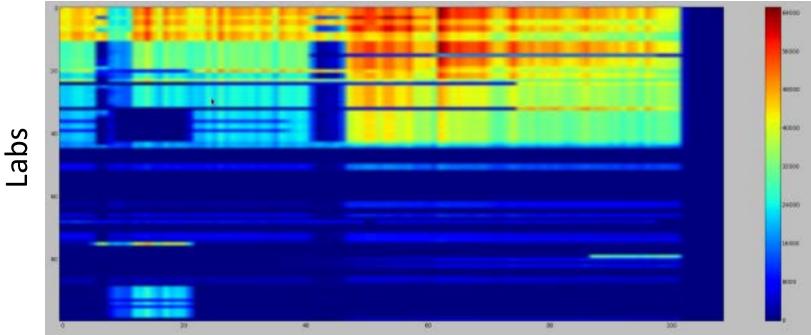


© Finlayson et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://</u> ocw.mit.edu/help/faq-fair-use/

[Finlayson et al., "Adversarial Attacks Against Medical Deep Learning Systems", Arxiv 1804.05296, 2018]

Machine learning is brittle: natural changes in the data

Top 100 lab measurements over time



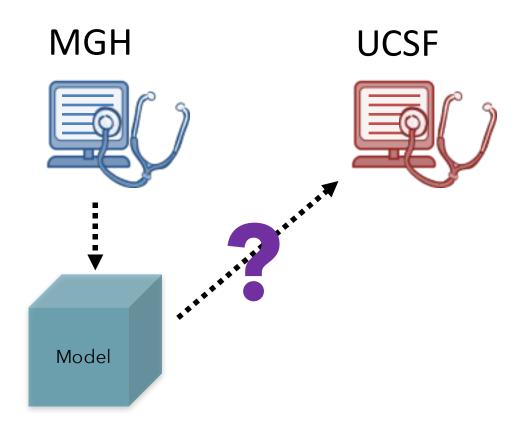
Time (in months, from 1/2005 up to 1/2014)

→ Significance of features may change over time (Figure from Lecture 5)

[Figure credit: Narges Razavian]

© Narges Razavian. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

Machine learning is brittle: natural changes in the data



[Figure adopted from Jen Gong and Tristan Naumann]

Outline for lecture

- 1. Building population-level checks into deployment/transfer
- 2. Machine learning in anticipation of dataset shift
 - Transfer learning
 - Defenses against adversarial attacks

Outline for lecture

- 1. Building population-level checks into deployment/transfer
- 2. Machine learning in anticipation of dataset shift
 - Transfer learning
 - Defenses against adversarial attacks

Transfer learning

- We have a lot of data from p(x,y) and a little data from q(x,y)
- How can we quickly adapt?
 - 1. Linear models: original representation, modify weights
 - 2. Linear models: manually choose a good shared representation
 - 3. Deep models: re-use part of the learned representation, fine-tune
 - 4. Deep models: automatically find a good shared representation

Transfer learning

- We have a lot of data from p(x,y) and a little data from q(x,y)
- How can we quickly adapt?
 - 1. Linear models: original representation, modify weights
 - 2. Linear models: manually choose a good shared representation
 - 3. Deep models: re-use part of the learned representation, fine-tune
 - 4. Deep models: automatically find a good shared representation

Transfer learning for linear models

- Learn w_{old} using data drawn from p(x,y)
- Then, when learning using data from q, instead of using typical L1 or L2 regularization, use:

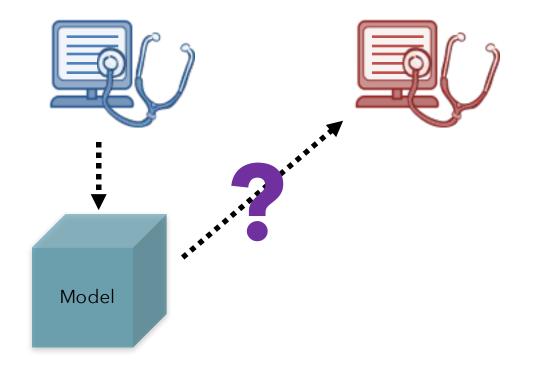
$$|w - w_{\text{old}}||_2^2$$
 or $||w - w_{\text{old}}||_1$

 Same as what we previously discussed for multi-task learning in the context of disease progression modeling

Transfer learning

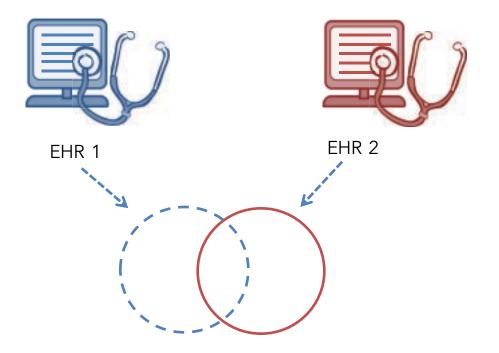
- We have a lot of data from p(x,y) and a little data from q(x,y)
- How can we quickly adapt?
 - 1. Linear models: original representation, modify weights
 - 2. Linear models: manually choose a good shared representation
 - 3. Deep models: re-use part of the learned representation, fine-tune
 - 4. Deep models: automatically find a good shared representation

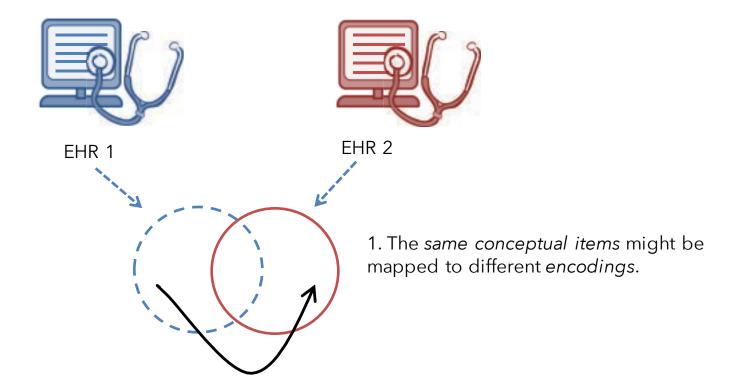
Predicting Clinical Outcomes Across Changing Electronic Health Record Systems

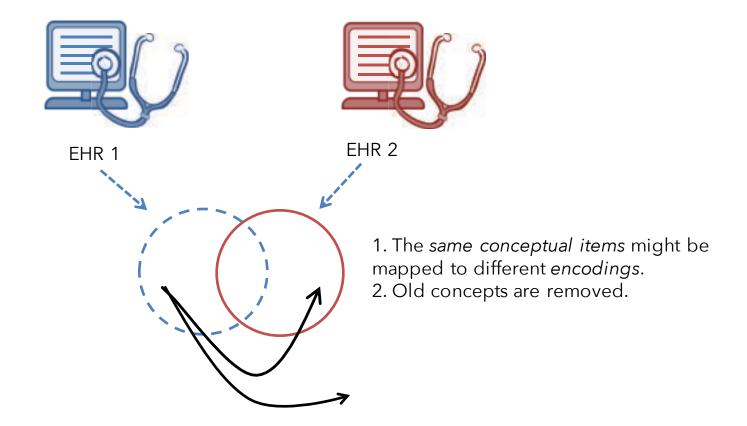


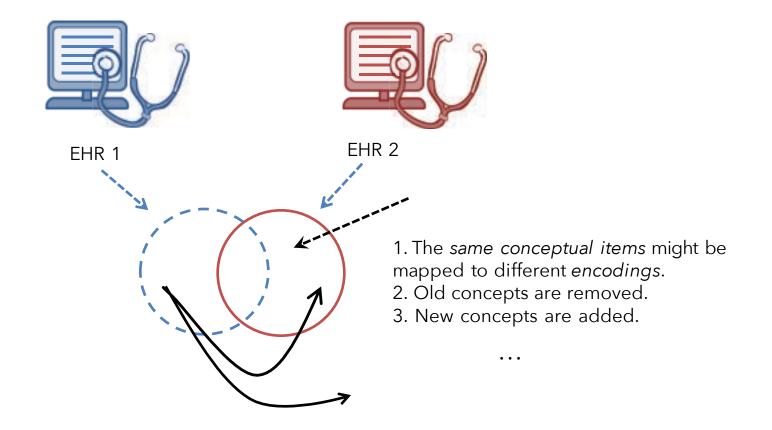
Jen J. Gong, Tristan Naumann, Peter Szolovits, John V. Guttag Computer Science and Artificial Intelligence Laboratory, MIT

KDD 2017

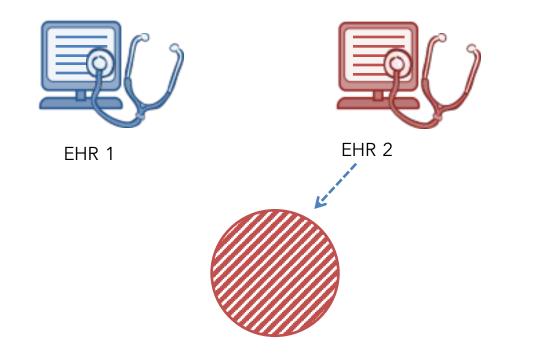






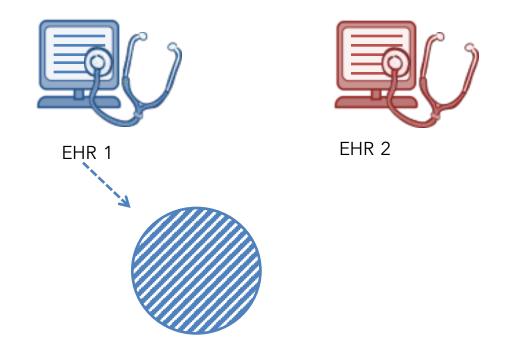


We can learn models using only EHR 2



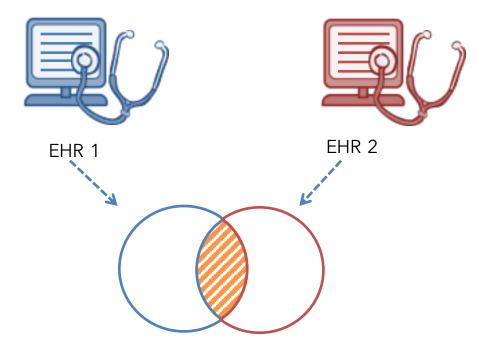
But this results in throwing away valuable data.

We can learn models on EHR 1 and apply them to EHR 2



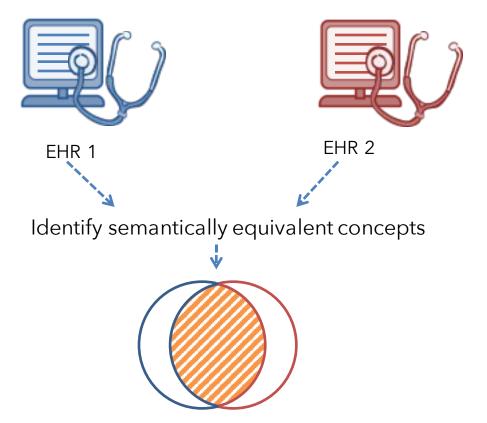
But concepts important in EHR 1 may not appear in EHR 2, and vice versa.

Or, we can develop a model on only the intersection of the elements in EHR 1 and EHR 2

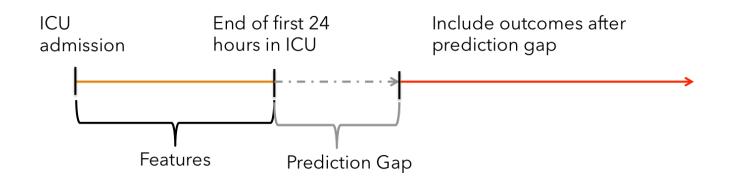


But this could remove the majority of clinical concepts in both EHRs from our model.

Solution: Map semantically similar items to a shared vocabulary

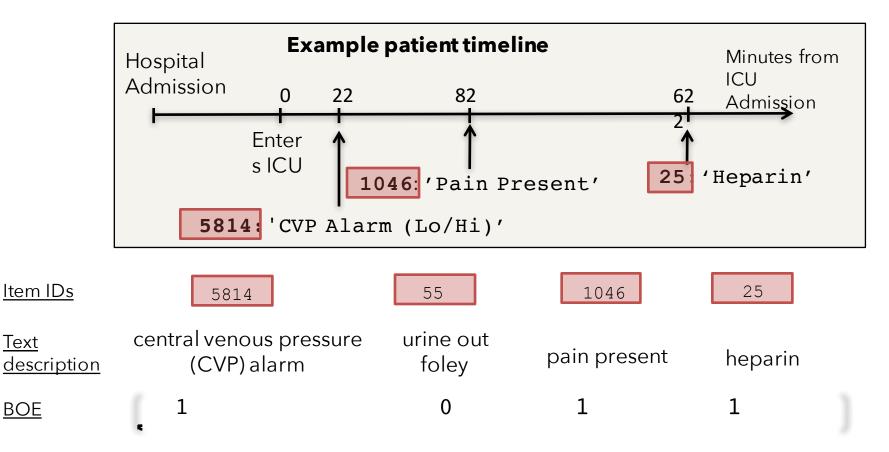


Predictive Models

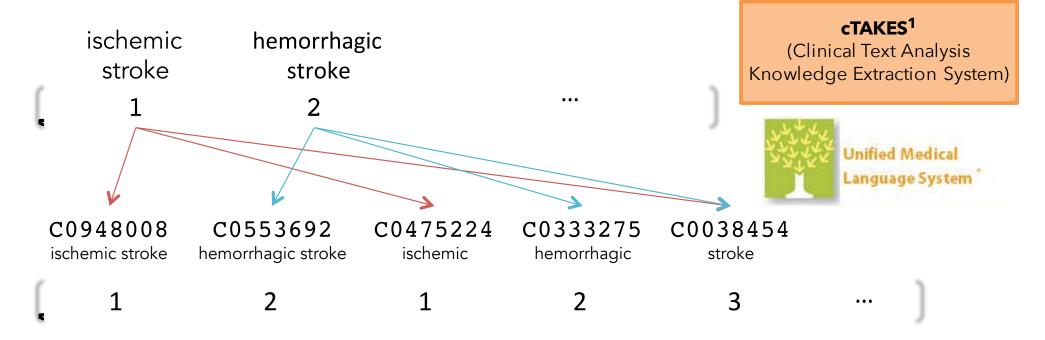


Outcomes: (1) In-Hospital Mortality, (2) Prolonged Length of Stay

Bag-of-events (BOE)



From EHR-specific events to a shared vocabulary



[1] Savova, G. K. et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation, and applications. JAMIA, 2010.

Data & Experimental Setup

• MIMIC-III dataset:

- Publicly available data from 2 EHR systems (CareVue and MetaVision) from ICUs.
- "Item IDs" encode different events (e.g., lab tests, vital signs, medications, other charted observations).
- Some "Item IDs" are shared between the two EHRs, but the majority are not

• Models

• L2-regularized Logistic Regression, 5-fold cross-validation on training set to determine best hyperparameters

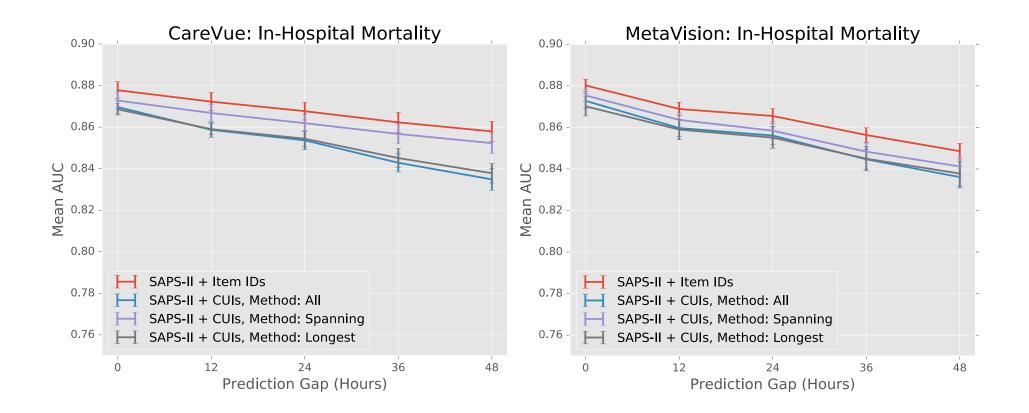
Three Experiments

- 1. Show that a *Bag-of-Events* feature representation is useful in predicting clinical outcomes within each EHR version.
- 2. Compare performance of semantically equivalent concepts (CUIs) to EHR-specific Item IDs **within EHR versions**.
- 3. Compare performance of semantically equivalent concepts (CUIs) to EHR-specific Item IDs **across EHR versions**.

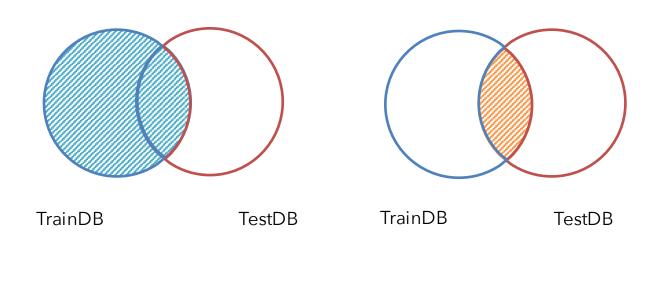
Does BOE feature representation have predictive value? CareVue: In-Hospital Mortality MetaVision: In-Hospital Mortality 0.90 0.90 0.85 0.85 0.80 0.80 Mean AUC 0.70 Mean AUC 0.75 0.70 0.70 0.65 0.65 SAPS-II only SAPS-II only Item IDs only Item IDs only 0.60 SAPS II + Item IDs 0.60 SAPS II + Item IDs 12 24 12 36 24 36 48 0 48 0 Prediction Gap (Hours) Prediction Gap (Hours)

Simplified Acute Physiology Score (SAPS-II): Uses statistics about patient physiology (e.g., heart rate, blood pressure, urine output).

What is the impact of mapping BOEs to CUIs within single EHRs?



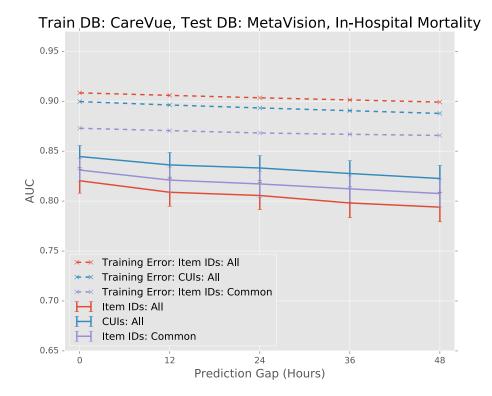
What happens when we apply models across EHRs?



Baseline 1: all

Baseline 2: common

What happens when we apply models across EHRs?

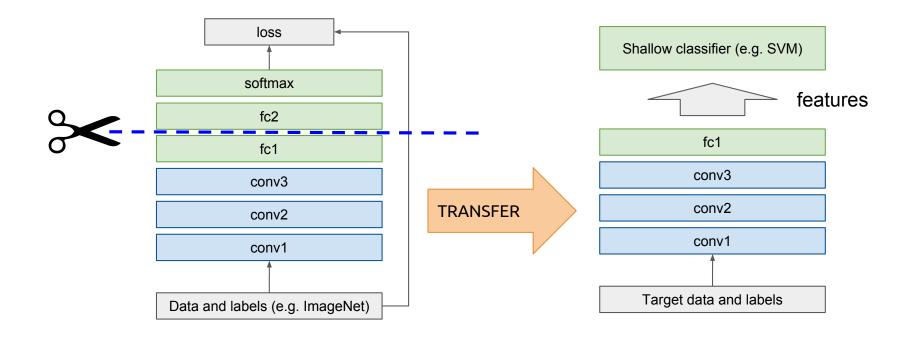


Transfer learning

- We have a lot of data from p(x,y) and a little data from q(x,y)
- How can we quickly adapt?
 - 1. Linear models: original representation, modify weights
 - 2. Linear models: manually choose a good shared representation
 - 3. Deep models: re-use part of the learned representation, fine-tune
 - 4. Deep models: automatically find a good shared representation

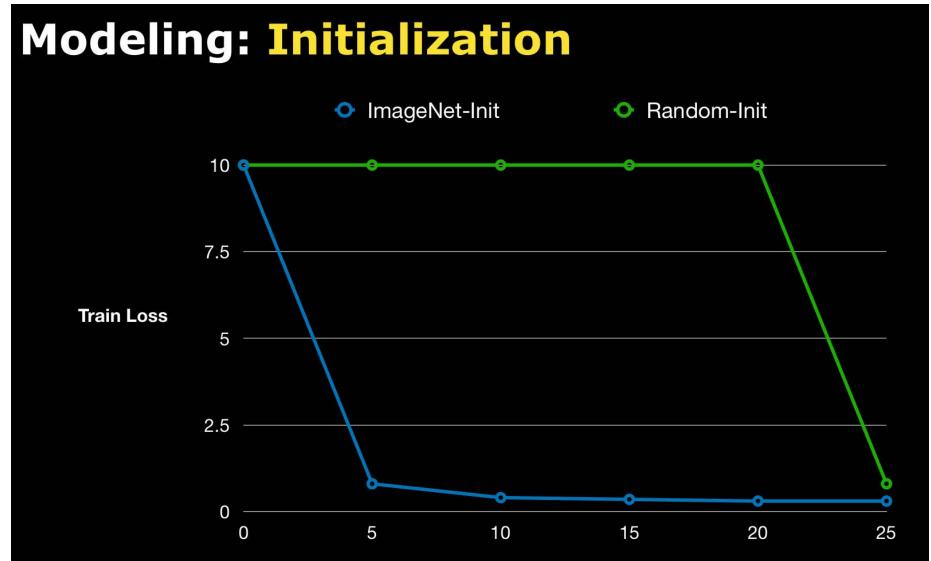
Transfer learning for feedforward networks

- Widely used technique in computer vision:
- Take a pre-trained model, chop off the top few layers, and train a new shallow model on the induced representation



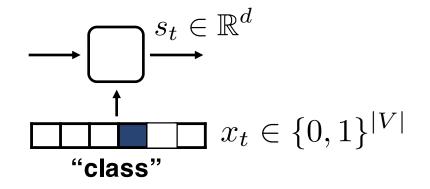
^{© &}lt;u>TelebcomBCN</u>. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u> Slide acknowledgement:TelecomBCN

Transfer learning for feedforward networks



[Adam Yala, MIT 6.S897/HST.956 Lecture 13, 2019.] ₃₇

• Naïve encoding of inputs for a RNN might use a one-hot encoding

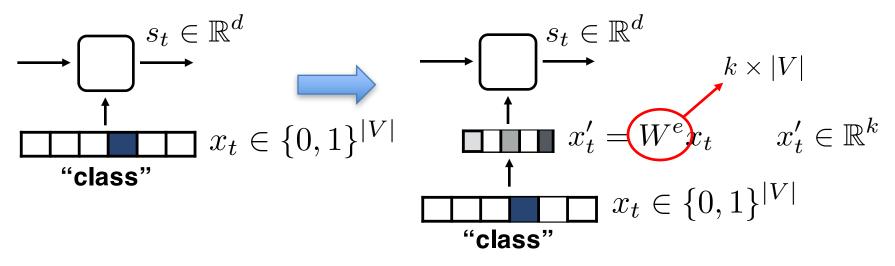


• An example of a (simplified) recurrent unit:

$$s_t = anh(W^{s,s}s_{t-1} + W^{s,x}x_t)$$
 dimension $d imes |V|$

• **Challenge:** how do we make hidden dimension *d* large, yet not overfit with rare words?

• Instead, do linear transformation of words prior to feeding to RNN



- Each column of W^e can be thought of as a word embedding, which can be trained end-to-end
- Can use *pre-trained* word embeddings, coming from learning a language model or another classification problem with a much larger dataset

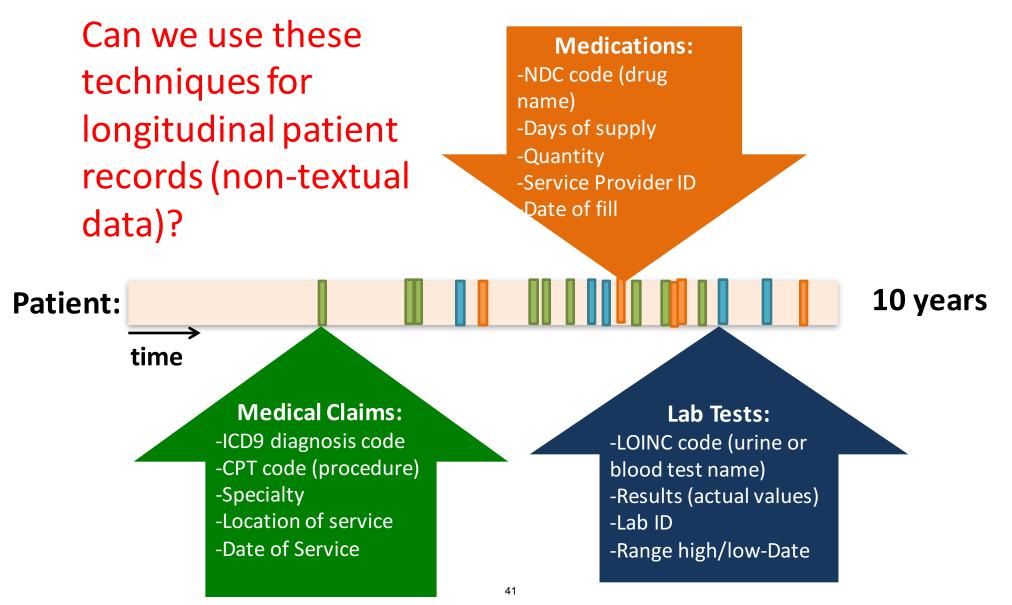
Application: clinical concept extraction

	i2b2 2010		i2b2 2012		Semeval 2014 Task 7		Semeval 2015 Task 14	
Method	General	MIMIC	General	MIMIC	General	MIMIC	General	MIMIC
w2v	-	82.67	-	73.77	_	72.49	_	73.96
GloVe	84.08	85.07	74.95	75.27	70.22	77.73	72.13	76.68
fastText	83.46	84.19	73.24	74.83	69.87	76.47	72.67	77.85
ELMo	83.83	87.80	76.61	80.5	72.27	78.58	75.15	80.46
BERT BASE	84.33	89.55	76.62	80.34	76.76	80.07	77.57	80.67
BERTLARGE	85.48	90.25	78.14	80.91	78.75	80.74	77.97	81.65
BioBERT	84.76	-	77.77	-	77.91	-	79.97	-

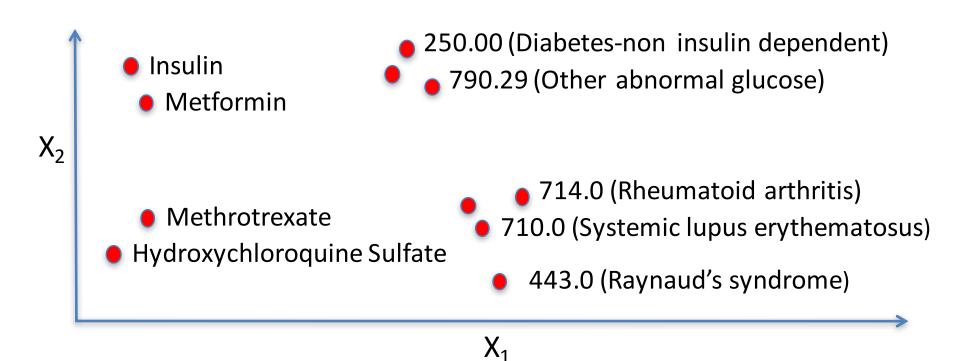
Table 3: Test set comparison in exact F-measure of embedding methods across tasks.

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[Si, Wang, Xu, Roberts. Enhancing Clinical Concept Extraction with Contextual Embedding. arXiv:1902.08691, Feb 2019]



• Can we embed all 3 million+ concepts in the UMLS (Unified Medical Language System), 140,000 ICD-10-CM diagnosis and procedure codes, 360,000 NDC medication codes...?



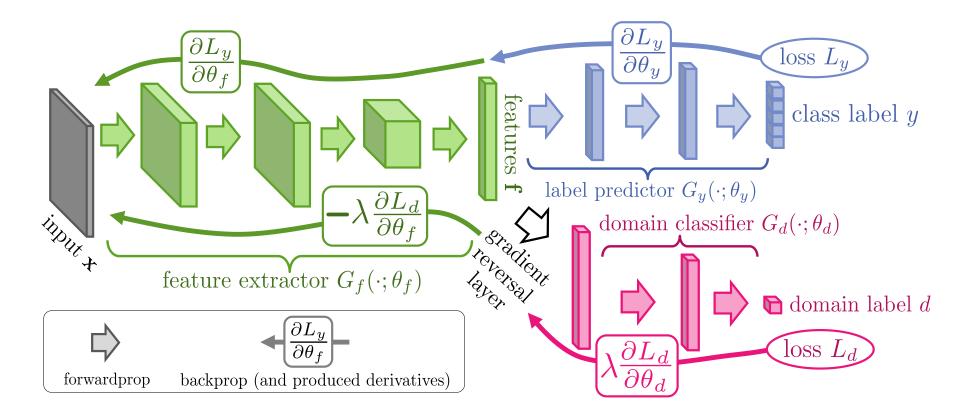
[Choi, Chiu, Sontag, Learning Low-Dimensional Representations of Medical Concepts, AMIA CRI 2016; Choi, Bahadori et al., Multi-Layer Representation Learning for Medical Concepts, KDD 2016; Beam et al., Clinical Concept Embeddings Learned⁴ from Massive Sources..., arXiv:1804.01486, 2018]

Transfer learning

- We have a lot of data from p(x,y) and a little data from q(x,y)
- How can we quickly adapt?
 - 1. Linear models: original representation, modify weights
 - 2. Linear models: manually choose a good shared representation
 - 3. Deep models: re-use part of the learned representation, fine-tune
 - 4. Deep models: automatically find a good shared representation

Automatically find a good shared representation

• Guided by learning theory (Ben-David et al. '06), recent work shows how to do domain adaptation *without labels in target set*:



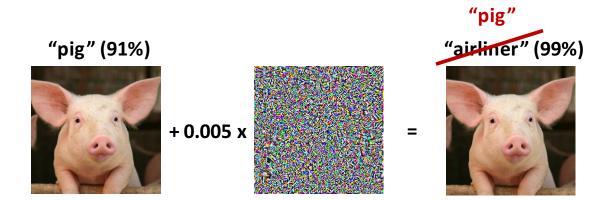
© <u>Ganin et al</u>. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

Ganin et al., Domain-Adversarial Training of Neural Networks. JMLR '16

Outline for lecture

- 1. Building population-level checks into deployment/transfer
- 2. Machine learning in anticipation of dataset shift
 - Transfer learning
 - Defenses against adversarial attacks

Towards Adversarially Robust Models

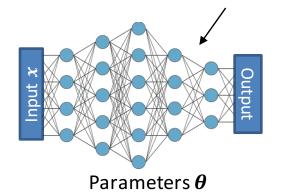


Acknowledgement: Slides from Aleksander Madry, MIT

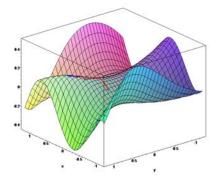
Pig image © source unknown. All rights reserved. This content is excluded from our Greative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Where Do Adversarial Examples Come From?

To get an adv. example Goal of training: min_{θ} $loss(\theta, x, y)$



Can use gradient descent method to find good θ



Graphs © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

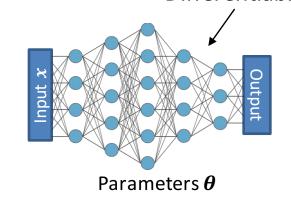
Where Do Adversarial Examples Come From?

To get an adv. example

Goal of

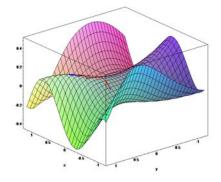
training.

 $loss(\theta, x + \delta, y)$



Differentiable

Can use gradient descent method to find good θ



Graphs © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

Slide credit: Aleksander Madry Used with permission.

Where Do Adversarial Examples Come From?

To get an adv. example

Goal of

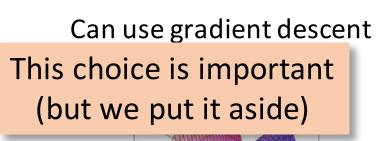
training:

 $max_{\delta} loss(\theta, x + \delta, y)$

Which δ are allowed?

Examples: δ that is small wrt

- ℓ_p -norm
- Rotation and/or translation
- VGG feature perturbation
- (add the perturbation you need here)



Parameters $\boldsymbol{\theta}$

In any case: We have to confront (small) ℓ_p -norm perturbations

Graphs © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

Towards ML Models that Are Adv. Robust

[M Makelov Schmidt Tsipras Vladu 2018]

Key observation: Lack of adv. robustness is **NOT** at odds with what we currently want our ML models to achieve

Standard generalization:

 $\mathbb{E}_{(x,y)\sim D}\left[loss(\theta,x,y)\right]$

Adversarially robust

But: Adversarial noise is a "needle in a haystack"

Towards ML Models that Are Adv. Robust

[M Makelov Schmidt Tsipras Vladu 2018]

Key observation: Lack of adv. robustness is **NOT** at odds with what we currently want our ML models to achieve

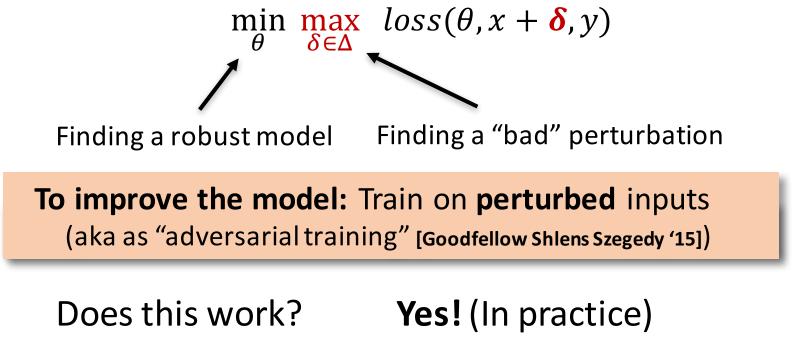
Standard generalization: $\mathbb{E}_{(x,y)\sim D} [\max_{\delta \in \Delta} loss(\theta, x + \delta, y)]$ Adversarially robust

But: Adversarial noise is a "needle in a haystack"

Towards ML Models that Are Adv. Robust

[M Makelov Schmidt Tsipras Vladu 2018]

Resulting training primitive:



But certain care is required

Slide credit: Aleksander Madry Used with permission.

How do we know this really works?

\rightarrow Seems to be a recurring problem...

Anish Athalye @anishathalye · Feb 1 Defending against adversarial examples is still an unsolved problem; 7/8 defenses accepted to ICLR three days ago are already broken: github.com/anishathalye/o... (only the defense from @aleks_madry holds up to its claims: 47% accuracy on CIFAR-10)

- \rightarrow Apply the standard security methodology:
 - Evaluate with multiple **adaptive** attacks
 - Use public security challenges
- \rightarrow Use formal verification (where feasible):
 - There is a steady progress on scaling these techniques up

53

[Katz et al '17, Wong Kolter '18, Tjeng et al '18, Dvijotham et al '18, Xiao Tjeng Shafiullah M '18]

Robustness by obscurity/complexity just does NOT work

(see robust-ml.org)

Tweet © Anish Athalye. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

V

MIT OpenCourseWare https://ocw.mit.edu

6.S897 / HST.956 Machine Learning for Healthcare

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms