Machine Learning for Healthcare HST.956, 6.S897

Lecture 4: Risk stratification

David Sontag

Outline for today's class

- 1. Risk stratification
- Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Evaluating risk stratification algorithms
- 3. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

What is risk stratification?

- Separate a patient population into high-risk and low-risk of having an outcome
 - Predicting something in the future
 - Goal is different from diagnosis, with distinct performance metrics
- Coupled with interventions that target highrisk patients
- Goal is typically to reduce cost and improve patient outcomes

Examples of risk stratification

Preterm infant's risk of severe morbidity? Does this patient need to be admitted to the coronary-care unit?

(Saria et al., Science Translational Medicine 2010)

(Pozen et al., NEJM 1984)

Likelihood of hospital readmission?

Source: HCUP Statistical Briefs #153 and #154: http://www.hcup-us.ahrq.gov/reports/statbriefs/statbriefs.jsp

Courtesy of AHRQ. Image is in the public domain.

Old vs. New

• Traditionally, risk stratification was based on simple scores using human-entered data

	0 Points	1 Point	t	2 Points	Points totaled
Activity (muscle tone)	Absent	Arms and legs flexed		Active movement	
Pulse	Absent	Below 100 b	opm	Over 100 bpm	
Grimace (reflex irritability)	Flaccid	Some flexion Extremitie	n of	Active motion (sneeze, cough, pull away)	
Appearance (skin color)	Blue, pale	Body pinl Extremities	k, blue	Completely pink	
Respiration	Absent	Slow, irregu	ılar	Vigorous cry	
			6		+
			Se	everely depressed	a 0-3
		1	Moderately depressed 4-6		
			Excellent condition 7-10		

APGAR SCORING SYSTEM

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>6

Old vs. New

- Traditionally, risk stratification was based on simple scores using human-entered data
- Now, based on machine learning on highdimensional data
 - Fits more easily into workflow
 - Higher accuracy
 - Quicker to derive (can special case)
- But, new dangers introduced with ML approach – to be discussed

Example commercial product

High-risk diabetes patients missing tests	# of A1c tests	# of LDL tests	Last A1c	Date of last A1c	Last LDL	Date of last LDL	
Patient 1	2	0	9.2	5/3/13	N/A	N/A	
Patient 2	2	0	8	1/30/13	N/A	N/A	
Patient 3	0	0	N/A	N/A	N/A	N/A	4
Patient 4	0	2	N/A	N/A	133	8/9/13	
Patient 5	0	0	N/A	N/A	N/A	N/A	
Patient 6	0	1	N/A	N/A	115	7/16/13	
Patient 7	1	0	10.8	9/18/13	N/A	N/A	
Patient 8	0	0	N/A	N/A	N/A	N/A	
Patient 9	0	0	N/A	N/A	N/A	N/A	
Patient 10	0	0	N/A	N/A	N/A	N/A	
							-1

Optum Whitepaper, "Predictive analytics: Poised to drive population health" © Optum. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Evaluating risk stratification algorithms
- 3. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

Type 2 Diabetes: A Major public health challenge

\$245 billion: Total costs of diagnosed diabetes in the United States in 2012\$831 billion: Total fiscal year federal budget for healthcare in the UnitedStates in 2014

Type 2 Diabetes Can Be Prevented *

Requirement for successful large scale prevention program

1. Detect/reach truly at risk population

2. Improve the interventions

3. Lower the cost of intervention

* Diabetes Prevention Program Research Group. "Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin." The New England journal of medicine 346.6 (2002): 393.

Traditional Risk Prediction Models

- Successful Examples
 - ARIC
 - KORA
 - FRAMINGHAM
 - AUSDRISC
 - FINDRISC
 - San Antonio Model
- Easy to ask/measure in the office, or for patients to do online
- Simple model: can calculate scores by hand

Famiah Diabetes Association

© Finnish Diabetes Association. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

Challenges of Traditional Risk Prediction Models

- A screening step needs to be done for every member in the population
 - Either in the physician's office or as surveys
 - Costly and time-consuming
 - Infeasible for regular screening for millions of individuals
- Models not easy to adapt to multiple surrogates, when a variable is missing
 - Discovery of surrogates not straightforward

Population-Level Risk Stratification

- Key idea: Use readily available administrative, utilization, and clinical data
- Machine learning will find surrogates for risk factors that would otherwise be missing
- Perform risk stratification at the population level – millions of patients

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. '16]

Health stakeholders

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

A Data-Driven approach on Longitudinal Data

- Looking at individuals who got diabetes *today*, (compared to those who didn't)
 - Can we infer which variables in their record could have predicted their health outcome?

Administrative & Clinical Data

Top diagnosis codes

_.

3804 Impacted cerumen

24046

				Disease	count
				71947 Joint pain-ankle	28648
Disease	count	Disease	count	3004 Dysthymic disorder	28530
4011 Benign hypertension	447017	53081 Esophageal reflux	121064	2689 Vitamin D deficiency	
2724 Hyperlipidemia NEC/NOS	382030	42731 Atrial fibrillation	113798	NOS	28455
4019 Hypertension NOS	372477	7295 Pain in limb	112449	V7281 Preop cardiovsclr	
25000 DMII wo cmp nt st uncntr	339522	41401 Crnry athrscl natve vssl	104478	exam	27897
2720 Pure hypercholesterolem	232671	2859 Anemia NOS	103351	7243 Sciatica	27604
2722 Mixed hyperlipidemia	180015	78650 Chest pain NOS	91999	78791 Diarrhea	27424
V7231 Routine gyn examination	178709	5990 Urin tract infection NOS	87982	V221 Supervis oth normal	2220
2449 Hypothyroidism NOS	169829	V5869 Long-term use meds NEC	85544	preg 26501 Opp angl brdarin la	27520
78079 Malaise and fatigue NEC	149797	496 Chr airway obstruct NEC	78585	risk	26033
V0481 Vaccin for influenza	147858	4779 Allergic rhinitis NOS	77963	37921 Vitreous	20000
7242 Lumbago	137345	41400 Cor ath unsp vsl ntv/gft	75519	degeneration	25592
V7612 Screen mammogram NEC	129445			4241 Aortic valve disorder	25425
V700 Routine medical exam	127848			61610 Vaginitis NOS	24736
				70219 Other sborheic	
Out of 135K natio	ents w	ho had laboratory	data	keratosis	24453

19

Top lab test results

Lab test		Lab test		Lab test
2160-0 Creatinine	1284737	2085-9 Cholesterol in HDI	1155666	770-8 Neutrophils/100
3094-0 Urea nitrogen	1282344	719 7 Homoglobin	1152726	leukocytes
2823-3 Potassium	1280812		1132720	731-0 Lymphocytes
2345-7 Glucose	1299897	4544-3 Hematocrit	1147893	704-7 Basophils
1742-6 Alanine		9830-1		711-2 Eosinophils
aminotransferase	1187809	cholesterol.total/Cholester	1037730	5905-5 Monocytes/100
1920-8 Aspartate		33914-3 Glomerular		leukocytes
aminotransferase	1187965	filtration rate/ 1.73 sq		706-2 Basophils/100
2885-2 Protein	1277338	M.predicted	561309	leukocytes
1751-7 Albumin	1274166	785-6 Frythrocyte mean		751-8 Neutrophils
2093-3 Cholesterol	1268269	corpuscular hemoglobin	1070832	742-7 Monocytes
2571-8 Triglyceride	1257751	6690-2 Leukocytes	1062980	713-8 Eosinophils/100
13457-7 Cholesterol.in LDL	1241208	789-8 Erythrocytes	1062445	leukocytes
17861-6 Calcium	1165370	797 2 Enuthroputo maan		3016-3 Thyrotropin
2951-2 Sodium	1167675	corpuscular volume	1063665	4548-4 Hemoglobin A1c/Hemoglobin total

Count of people who have the test result (ever)

Outline for today's class

- 1. Risk stratification
- Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Evaluating risk stratification algorithms
- 3. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

Framing for supervised machine learning

Gap is important to prevent label leakage

Framing for supervised machine learning

Problem: Data is censored!

- Patients change health insurers frequently, but data doesn't follow them
- *Left censored*: may not have enough data to derive features
- *Right censored*: may not know label

Reduction to binary classification

Exclude patients that are left- and right-censored.

This is an example of alignment by *absolute time*

Alternative framings

- Align by relative time, e.g.
 - 2 hours into patient stay in ER
 - Every time patient sees PCP
 - When individual turns 40 yrs old
- Align by data availability

NOTE:

• If multiple data points per patient, make sure each patient in *only* train, validate, or test

Methods

- L1 Regularized Logistic Regression
 - Simultaneously optimizes predictive performance *and*
 - Performs feature selection, choosing the subset of the features that are most predictive
- This prevents overfitting to the training data

 Penalizing the L1 norm of the weight vector leads to *sparse* (read: many 0's) solutions for *w*.

$$\begin{split} \min_{w} \sum_{i} \ell(x_{i}, y_{i}; w) + & ||w||_{1} & ||\vec{w}||_{1} = \sum_{d} |w_{d}| \\ \text{instead of} \\ \min_{w} \sum_{i} \ell(x_{i}, y_{i}; w) + & ||w||_{2}^{2} & ||\vec{w}||_{2}^{2} = \sum_{d} w_{d}^{2} \end{split}$$

• Why?

 Penalizing the L1 norm of the weight vector leads to *sparse* (read: many 0's) solutions for *w*.

• Penalizing the L1 norm of the weight vector leads to *sparse* (read: many 0's) solutions for *w*.

 Penalizing the L1 norm of the weight vector leads to *sparse* (read: many 0's) solutions for *w*.

Features used in models

• Is the value fluctuating?

Features used in models

Total features per patient: 42,000

Outline for today's class

- 1. Risk stratification
- Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Evaluating risk stratification algorithms
- 3. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

• 769 variables have non-zero weight

Top History of Disease	Odds Ratio
Impaired Fasting Glucose (Code 790.21)	4.17 (3.87 4.49)
Abnormal Glucose NEC (790.29)	4.07 (3.76 4.41)
Hypertension (401)	3.28 (3.17 3.39)
Obstructive Sleep Apnea (327.23)	2.98 (2.78 3.20)
Obesity (278)	2.88 (2.75 3.02)
Abnormal Blood Chemistry (790.6)	2.49 (2.36 2.62)
Hyperlipidemia (272.4)	2.45 (2.37 2.53)
Shortness Of Breath (786.05)	2.09 (1.99 2.19)
Esophageal Reflux (530.81)	1.85 (1.78 1.93)

Diabetes

1-year gap

• 769 variables have non-zero weight

Top History of Diseas	Additional Disease Risk Factors Include:
Impaired Fasting Glucose (Code	Pituitary dwarfism (253.3),
Abnormal Glucose NEC (790.29)	Hepatomegaly(789.1), Chronic Hepatitis C (070.54) Hepatitis (573.3) Calcaneal
Hypertension (401)	Spur(726.73), Thyrotoxicosis without
Obstructive Sleep Apnea (327.23)	mention of goiter(242.90), Sinoatrial Node
Obesity (278)	dysfunction(427.81), Acute frontal sinusitis
Abnormal Blood Chemistry (790.6	(461.1), Hypertrophic and atrophic
Hyperlipidemia (272.4)	conditions of skin(701.9), Irregular
Shortness Of Breath (786.05)	menstruation(626.4),
Esophageal Reflux (530.81)	1.85 (1.78 1.93)

Diabetes

1-year gap

• 769 variables have non-zero weight

Top Lab Factors	Odds Ratio
Hemoglobin A1c /Hemoglobin.Total (High - past 2 years)	5.75 (5.42 6.10)
Glucose (High- Past 6 months)	4.05 (3.89 4.21)
Cholesterol.In VLDL (Increasing - Past 2 years)	3.88 (3.53 4.27)
Potassium (Low - Entire History)	2.58 (2.24 2.98)
Cholesterol.Total/Cholesterol.In HDL (High - Entire History)	2.29 (2.19 2.40)
Erythrocyte mean corpuscular hemoglobin concentration -(Low - Entire History)	2.25 (1.92 2.64)
Eosinophils (High - Entire History)	2.11 (1.82 2.44)
Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)	2.07 (1.92 2.24)
Alanine aminotransferase (High Entire History)	2.04 (1.89 2.19)

Diabetes

1-year gap

• 769 variables have non-zero weight

Top Lab Factors			
Hemoglobin A1c /Hemoglobin.Total (High	Additional Lab Test Risk Factors Include:		
Glucose (High- Past 6 months)	Albumin/Globulin (Inc	reasing -Entire	
Cholesterol.In VLDL (Increasing - Past 2	Entire History), Specific gravity (Increasing,		
Potassium (Low - Entire History)	Past 2 years), Bilirubin (high -Past 2 years),		
Cholesterol.Total/Cholesterol.In HDL (Hig			
Erythrocyte mean corpuscular hemoglobin History)	o concentration -(Low - Entire	2.25 (1.92 2.64)	
Eosinophils (High - Entire History)	2.11 (1.82 2.44)		
Glomerular filtration rate/1.73 sq M.Predic	2.07 (1.92 2.24)		
		2.04	

Alanine aminotransferase (High Entire History)

Diabetes

1-year gap

 $(1.89 \ 2.19)$

Positive predictive value (PPV)

Top 100 Predictions Diabetes 1-year gap Top 1000 Predictions

Top 10000 Predictions

Outline for today's class

- 1. Risk stratification
- Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Evaluating risk stratification algorithms
- 3. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

MIT OpenCourseWare https://ocw.mit.edu

6.S897 / HST.956 Machine Learning for Healthcare

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms