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Lecture 19: Disease progression modeling & 
subtyping, Part 2 
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Recap of goals of disease 
progression	 modeling 

• Predictive: 
– What will this patient’s future trajectory look like? 

• Descriptive: 
– Find markers of disease stage and progression,	 
statistics	 of what to expect when 

– Discover new disease	 subtypes 
• Key challenges we will tackle: 
– Seldom directly observe disease stage,	 but rather only
indirect observations (e.g. symptoms) 

– Data is censored – don’t observe beginning to end 
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Outline of today’s lecture 

1. Staging from cross-sectional data 
– Wang, Sontag, Wang, KDD 2014 

– Pseudo-time methods from computational 
biology 

2. Simultaneous staging & subtyping 
– Young et al., Nature	 Communications 2018 
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Stage vs. subtype 

• Staging: sort patients into early-late disease or
severity,	 i.e. discover the trajectory 

• Cross-sectional data: only 1 time point observed
per patient 
– More generally,	 censored to be a short window 

• Naïve clustering can’t differentiate between	 stage 
and subtype 
– Patients assumed to be aligned at baseline 

• Let’s build some intuition around how staging
from cross-sectional data might be possible… 
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In 	1-D, might assume that low values 
correspond to an early disease stage 
(or vice-versa) 

“John” “Mary” 

Early disease Biomarker A Late disease 

Assume samples were all taken today 
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	 	 	 	What about in higher dimensions? 

Biomarker B 

Biomarker A 
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What about in higher dimensions? 

Insight #1: with 
enough data, may 
be possible to 
recognize structure 

Biomarker B 

Biomarker A 
[Bendall et al., Cell 2014	 (human B cell development)] 
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What about in higher dimensions? 

1 

2 

4 

1 

1 

2 

2 
3 

3 

Biomarker B 

Insight #2: sequential 
observations from 
same patient can 
also help 

Each color is 
a	 different 
patient 

Biomarker A 
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What about in higher dimensions? 

Early disease 

Biomarker B 

Late disease 

Biomarker A 
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May also seek to discover disease subtypes 

Biomarker B 

Subtype 1 
Subtype 2 

Biomarker A 
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1. Staging from cross-sectional data 
– Wang, Sontag, Wang, KDD 2014 

– Pseudo-time methods from computational 
biology 

2. Simultaneous staging & subtyping 
– Young et al., Nature	 Communications 2018 
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COPD diagnosis & progression 

• COPD diagnosis made using a breath test – fraction of	 air 
expelled in first second of exhalation <	 70% 

• Most doctors use GOLD criteria to stage the disease and 
measure its progression: 

Chronic obstructive pulmonary disease. The Lancet, Volume 379, Issue 9823, Pages 1341 - 1351, 7	 April 2012 

Courtesy of Elsevier Ltd. Used with permission. 13

https://www.sciencedirect.com/science/article/pii/S0140673611609689


The big picture: generative model for patient data 

Markov Jump Process 

Progression Stages 

K phenotypes, each 
with its own Markov 

chain 

Observations 

Diabetes 

Depression 

Lung cancer 

	 	 	 	 	 	 	

	 	

	

	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	

	

  

[Wang, Sontag, Wang, “Unsupervised learning of Disease Progression Models”, KDD 2014] 
© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 14

https://ocw.mit.edu/help/faq-fair-use/
https://dl.acm.org/citation.cfm?id=2623754


	 	
	

	 		 	
	

	 	
	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 			 	 	

	

 

 

Model for patient’s disease progression across time 

Underlying S(τ) disease state 
� = 34 days 

……S1 S2 ST-1 ST 

Disease stage on Disease stage on Disease stage on Disease stage on 
Mar. ‘11? Apr. ‘11? Feb. ‘12? Jun.	 ‘12? 

• A	 continuous-time Markov process with irregular discrete-time 
observations 

• The transition probability is defined by an intensity matrix and the time 
interval: 

Matrix Q: Parameters to learn 

© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, 

see https://ocw.mit.edu/help/faq-fair-use/ 
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Model for data at single point in time: 
Noisy-OR network 
Previously used for medical diagnosis, e.g. QMR-DT (Shwe 
et al. ’91) 

© ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, 

see https://ocw.mit.edu/help/faq-fair-use/ 
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Model for data at single point in time: 
Noisy-OR network 
Previously used for medical diagnosis, e.g. QMR-DT (Shwe 
et al. ’91) 

Comorbidities /	 Phenotypes “Everything else” 
(hidden) (always on) 

Diabetes Depression Lung cancer 

All binary variables 

Diagnosis codes, 
205.02 296.3 Methotrexate medications, etc. 

Clinical findings
(observable) © ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, 

see https://ocw.mit.edu/help/faq-fair-use/ 
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Model for data at single point in time: 
Noisy-OR network 

Previously used for medical diagnosis, e.g. 
QMR-DT (Shwe et al. ’91) 

Comorbidities /	 Phenotypes “Everything else” 
(hidden) (always on) 

Diabetes Depression Lung cancer 

We also learn which 
edges exist 

205.02 296.3 Methotrexate 

Clinical findings 
(observable) © ACM. All rights reserved. This content is excluded from our Creative Commons license.  

For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Model for data at single point in time: 
Noisy-OR network 

Previously used for medical diagnosis, e.g. 
QMR-DT (Shwe et al. ’91) 

Comorbidities /	 Phenotypes “Everything else” 
(hidden) (always on) 

Diabetes Depression Lung cancer 

We also learn which 
edges exist 

Associated with each 
edge	 is a failure 205.02 296.3 Methotrexate 
probability 

Clinical findings 

© ACM. All rights reserved. This content is excluded from our Creative Commons license.  

For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Using anchors to ground the hidden variables 

• An anchor is a finding that can only be	 caused by a single 
comorbidity (discussed in Lecture 8) 

Diabetes 

205.02 

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

  

  

Y. Halpern,	 YD Choi,	 S. Horng,	 D. Sontag. Using Anchors to Estimate Clinical State without Labeled Data. To appear in the American 
Medical Informatics Association (AMIA) Annual Symposium, Nov. 2014 

© ACM. All rights reserved. This content is excluded from our Creative Commons license.  

For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Using anchors to ground the hidden variables 

• Provide anchors for each of the comorbidities: 

• Can be viewed as a type of weak supervision, using clinical 
domain	 knowledge 

• Without these, the results are less interpretable 

© ACM. All rights reserved. This content is excluded from our Creative Commons license.  

For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Model of comorbidities across	 time 

S(τ) 

…… 
S1 S2 ST-1 ST 

X1,1 X1,2 
…… X1,T-1 X1,T 

Has diabetes Has diabetes Has diabetes Has diabetes 
Mar. ‘11? Apr. ‘11? Feb. ‘12? Jun.	 7, ‘12? 

• Presence of comorbidities depends on	 value at previous time 
step and on disease stage 

• Later stages of	 disease = more likely to develop comorbidities 

• Make the assumption that once patient has a comorbidity, 
likely to always have	 it 

© ACM. All rights reserved. This content is excluded from our Creative Commons license.  

For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Experimental evaluation 

• We create a COPD cohort of 3,705 patients: 
– At least one COPD-related diagnosis code 

– At least one COPD-related drug 

• Removed patients with too few records 

• Clinical findings derived from 264 diagnosis codes 
– Removed ICD-9	 codes that only occurred to a small number of patients 

• Combined visits into 3-month time windows 

• 34,976	 visits, 189,815	 positive findings 
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Inference 

• Outer loop 
– EM 

– Algorithm to estimate the Markov Jump Process is borrowed 
form recent literature in physics 

• Inner loop 
– Gibbs sampler used for approximate inference 

– Perform block sampling of the Markov chains, improving the 
mixing time of the Gibbs sampler 

• If I	 were to do it again…	 would do variational 
inference with a recognition network (as in VAEs) 

P. Metzner,	 I. Horenko,	 and C. Schutte.	 Generator estimation of markov jump processes based on incomplete 
observations nonequidistant in time. Physical	 Review E, 76(6):066702, 2007. 
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Customizations for COPD 

• Enforce monotonic stage progression, i.e. St+1 ≥	 St: 

S(τ) 

……S1 S2 ST-1 ST 

• Enforce monotonicity in distributions of comorbidities in first 
time step, e.g. Pr(Xj,1 |	 S1 =	 2) ≥	 Pr(Xj,1 |	 S1 =	 1) 
– To do this, we solve a tiny convex optimization problem within EM 

• Enforce that transitions in X can only happen at the same time 
as transitions in S 

• Edge weights given a Beta(0.1, 1) prior to encourage sparsity 

© ACM. All rights reserved. This content is excluded from our Creative Commons license.  
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	 	 	 	Edges learned for kidney disease 

Diagnosis code Weight 

*585.3 0.20 Chronic Kidney Disease, Stage Iii (Moderate) 
285.9 0.15 Anemia, Unspecified 
*585.9 0.10 Chronic Kidney Disease, Unspecified 
599.0 0.08 Urinary Tract Infection, Site Not Specified 
*585.4 0.08 Chronic Kidney Disease, Stage Iv (Severe) 
*584.9 0.07 Acute Renal Failure, Unspecified 
*586 0.07 Renal Failure, Unspecified 
782.3 0.06 Edema 
*585.6 0.05 End Stage Renal Disease 
593.9 0.04 Unspecified Disorder Of Kidney And Ureter 
272.4 0.04 Other And Unspecified Hyperlipidemia 
272.2 0.03 Mixed Hyperlipidemia 
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	 	 	 	Edges learned for kidney disease 

Diagnosis code Weight 

*585.3 0.20 Chronic Kidney Disease, Stage Iii (Moderate) 
285.9 0.15 Anemia,	 Unspecified 
*585.9 0.10 Chronic Kidney Disease, Unspecified 
599.0 0.08 Urinary Tract Infection, Site Not Specified 
*585.4 0.08 Chronic Kidney Disease, Stage Iv (Severe) 
*584.9 0.07 Acute Renal Failure, Unspecified 
*586 0.07 Renal Failure, Unspecified 
782.3 0.06 Edema 
*585.6 0.05 End Stage Renal Disease 
593.9 0.04 Unspecified Disorder Of Kidney And Ureter 
272.4 0.04 Other And Unspecified Hyperlipidemia 
272.2 0.03 Mixed Hyperlipidemia 

27



Unspecifie 

Of 
And Unspecified H 

	 	 	 	 	

	 	 	
	 	 	 	 	
	 	 	 	 	

	 	 	
	 	

	 	 	
	 	 	 	 	

	 	 	
	

	

	 	 	 	

 

Unspecified
Site Not Specified
Stage Iv (Severe)
pecified
d

Kidney And Ureter
yperlipidemia

Edges learned for kidney disease 

Diagnosis code Weight 

*585.3 0.20
285.9 0.15 
*585.9 0.10
599.0 0.08 
*585.4 0.08
*584.9 0.07
*586 0.07
782.3 0.06 
*585.6 0.05
593.9 0.04 
272.4 0.04 
272.2 0.03 

Chronic Kidney Disease, Stage Iii (Moderate) 
Anemia,	 Unspecified 
Chronic Kidney Disease, 
Urinary Tract Infection, 
Chronic Kidney Disease, 

Why do people with kidney 
disease get anemia? 

Your kidneys make an important 
hormone called erythropoietin 

Acute Renal Failure, Uns 
Renal Failure, 
Edema 

(EPO). Hormones are secretions 
that your body makes to help 
your body work and keep you 
healthy. EPO tells your body to 

End Stage Renal Disease 
Unspecified Disorder 
Other 

make red blood cells. When you 
have kidney disease, your kidneys 
cannot make enough EPO. This 
causes your red blood cell count 

Mixed Hyperlipidemia to drop and anemia to develop. 

WWW.KIDNEY.ORG 

28

WWW.KIDNEY.ORG


	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	

	 	
	 	 	 	 	
	 	 	 	

	
	 	

	 	 	 	 	

	

	 	 	 	Edges learned for lung cancer 

Diagnosis code Weight 

*162.9 0.60 Malignant Neoplasm Of Bronchus And Lung 
518.89 0.15 Other Diseases Of Lung, Not Elsewhere Classified 
*162.8 0.15 Malignant Neoplasm Of Other Parts Of Lung 
*162.3 0.15 Malignant Neoplasm Of Upper Lobe, Lung 
786.6 0.15 Swelling, Mass, Or Lump In Chest 
793.1 0.10 Abnormal Findings On Radiological Exam Of Lung 
786.09 0.07 Other Respiratory Abnormalities 
*162.5 0.06 Malignant Neoplasm Of Lower Lobe, Lung 
*162.2 0.04 Malignant Neoplasm Of Main Bronchus 
702.0 0.03 Actinic Keratosis 
511.9 0.03 Unspecified Pleural Effusion 
*162.4 0.03 Malignant Neoplasm Of Middle Lobe, Lung 
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	 	 	 	Edges learned for lung cancer 

Diagnosis code Weight 

*162.9 0.60 Malignant Neoplasm Of Bronchus And Lung 
518.89 0.15 Other Diseases Of Lung, Not Elsewhere Classified 
*162.8 0.15 Malignant Neoplasm Of Other Parts Of Lung 
*162.3 0.15 Malignant Neoplasm Of Upper Lobe, Lung 
786.6 0.15 Swelling, Mass, Or Lump In Chest 
793.1 0.10 Abnormal Findings On Radiological Exam Of Lung 
786.09 0.07 Other Respiratory Abnormalities 
*162.5 0.06 Malignant Neoplasm Of Lower Lobe, Lung 
*162.2 0.04 Malignant Neoplasm Of Main Bronchus 
702.0 0.03 Actinic Keratosis 
511.9 0.03 Unspecified Pleural Effusion 
*162.4 0.03 Malignant Neoplasm Of Middle Lobe, Lung 
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	 	 	 	Edges learned for lung cancer 

Diagnosis code Weight 

*162.9 0.60 Malignant Neoplasm Of Bronchus And Lung 
518.89 0.15 Other Diseases Of Lung, Not Elsewhere Classified 
*162.8 0.15 Malignant Neoplasm Of Other Parts Of Lung 
*162.3 0.15 Malignant Neoplasm Of Upper Lobe, Lung 
786.6 0.15 Swelling, Mass, Or Lump In Chest 
793.1 0.10 Abnormal Findings On Radiological Exam Of Lung 
786.09 0.07 Other Respiratory Abnormalities 
*162.5 0.06 Malignant Neoplasm Of Lower Lobe, Lung 
*162.2 0.04 Malignant Neoplasm Of Main Bronchus 
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511.9 0.03 Unspecified Pleural Effusion 
*162.4 0.03 Malignant Neoplasm Of Middle Lobe, Lung 
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	 	 	 	Edges learned for lung infection 

Diagnosis code Weight 

*486 0.30 Pneumonia, Organism Unspecified 
786.05 0.10 Shortness Of Breath 
786.09 0.10 Other Respiratory Abnormalities 
786.2 0.10 Cough 
793.1 0.06 Abnormal Findings On Radiological Exam Of Lung 
285.9 0.05 Anemia, Unspecified 
518.89 0.05 Other Diseases Of Lung, Not Elsewhere Classified 
466.0 0.05 Acute Bronchitis 
799.02 0.05 Hypoxemia 
599.0 0.04 Urinary Tract Infection, Site Not Specified 
V58.61 0.04 Long-Term (Current) Use Of Anticoagulants 
786.50 0.04 Chest Pain, Unspecified 
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Progression of a single patient 	 	 	 	

 

  

2010 2013 
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Prevalence of comorbidities across stages 
(Kidney disease) 
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Prevalence of comorbidities across stages 
(Diabetes	 & Musculoskeletal disorders) 
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Prevalence of comorbidities across stages 
(Cardiovascular disease) 
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Outline of today’s lecture 

1. Staging from cross-sectional data 
– Wang, Sontag, Wang, KDD 2014 

– Pseudo-time methods from computational 
biology 

2. Simultaneous staging & subtyping 
– Young et al., Nature	 Communications 2018 
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Single-cell sequencing 	

© Yijyechern on Wikipedia. All rights reserved. This content is excluded from our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/ 
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Inferring original trajectory from single-cell data 

Fig 1. The single cell pseudotime estimation problem. (A) Single cells at different stages of a temporal process. (B) The 
temporal labelling information is lost during single cell capture. (C) Statistical pseudotime estimation algorithms attempt to 
reconstruct the relative temporal ordering of the cells but cannot fully reproduce physical time. (D) The pseudotime estimates 
can be used to identify genes that are differentially expressed over (pseudo)time. 

[Figure from: Campbell &	 Yau,	 PLOS Computational Biology,	 2016] 
Courtesy of Campbell and Yau. Used under CC BY. 
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[Campbell & 
Yau,	 PLOS 
Computational 
Biology, 2016] 

Courtesy of Campbell and Yau. Used under CC BY. 
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–

–

–

–

–

[Saelens,	 Cannoodt,	 Todorov,	 Saeys.	 A	 comparison of single-cell trajectory inference methods. 
Nature Biotechnology,	 2019] 

https://github.com/dynverse/dynbenchmark/ 
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MST-based	 approach	 (Monocle) 

Cells represented as 
points in expression space Reduce dimensionality Build MST on cells 

(ICA) 

Label cells by type Order cells in pseudotime 
via MST 

Differentially expressed 
genes by cell type Look	for	

Differentially expressed longest	
genes across pseudotime path	 in	 

Gene expression the	tree 
clusters and trends 

[Magwene et	al.,	Bioinformatics,	 2003;	Trapnell et	al.,	Nature	Biotechnology,	 2014] 

© Springer Nature. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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MST-based	 approach	 (Monocle) 
InterstitialProliferating Differentiating mesenchymalcell myoblast cell 

Beginning of 
pseudotime 

0 

−1

−2 End of 
pseudotime 

−3 −2
Component 2 

[Trapnell et	al.,	Nature	Biotechnology,	 2014] 
© Springer Nature. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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	 	 	 	Statistical model for probabilistic pseudotime 

Definition 
µ is a Gaussian process if for any collection T = {t

i , i = 1, .  . . ,  N}, 
0 

B@ 

µ(t1) 
. . . 

µ(t
N ) 

1 

CA ⇠ N (0, K (T, T)) 

✓ ◆||t
i1 � t

i2 ||2 

k(t
i1 , ti2 ) =  ⌧ 2 exp � (squared exponential) 

2`2 
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g mma ga; gb ;

lj ⇠ ExpÖgÜ; j à 1; . . . ; P;

s2
j ⇠ InvGammaÖa;bÜ; j à 1; . . . ; P;

⇠ Ga Ö Ü 

Statistical model for probabilistic pseudotime 

ti ⇠ TruncNormalâ0;1ÜÖmt ; s
2 
t Ü; i à 1; . . . ; N; 

Σ à diagÖs2; . . . ; s2 Ü1 P P: dimension (e.g. 2) 

KÖjÜÖt; t0Ü à exp Ö&ljÖt & t0Ü2Ü; j à 1; . . . ; P; 

mj ⇠ GPÖ0; KÖjÜÜ; j à 1; . . . ; P; GP: Gaussian Process	 (1-D) 

Ü; ΣÜ; i à 1; . . . ; N:xi ⇠ MultiNormÖμÖti

Courtesy of Campbell and Yau. Used under CC BY. 

N: number of data points 

Truncated normal 
distribution 

[Campbell & Yau,	 PLOS Computational Biology,	 2016] 45

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005212


	 	 	

	 	 	
	 	 	

	 	 	 	

	 	 	
	 	 	 	 	

	 	 	 	 	 	

Outline of today’s lecture 

1. Staging from cross-sectional data 
– Wang, Sontag, Wang, KDD 2014 

– Pseudo-time methods from computational 
biology 

2. Simultaneous staging & subtyping 
– Young et al., Nature Communications 2018 

Acknowledgement: Subsequent slides adapted from Daniel Alexander 
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Temporal heterogeneity 
Patients show various disease stages through which patterns of pathology 
evolve 

Alzheimer’s 	disease Frontotemporal dementia 

Braak and Braak 1991	 Brettschneider et al. 2014 
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	Phenotypic heterogeneity 

Individuals have different disease subtypes with distinct patterns of 
pathology 

Alzheimer’s 	disease Frontotemporal dementia 

Typical 
Hippocampal-

sparing 
Limbic-

predominant 

48 Whitwell et al. 2012 

Murray et al. 2011, Whitwell et al. 2012 

Courtesy of Whitwell et al. Used under CC BY. 

https://academic.oup.com/brain/article/135/3/794/1746582


	 	 	 	

	 	 	 	 	

Subtype and Stage Inference (SuStaIn)	 

a 

S
ub

ty
pe

s 

Time 

I 

II 

Underlying model 

Input data: heterogeneous patient snapshots 

d 

b c 

S
ub

ty
pe

s

II 

I 

Stages 
Output: reconstruction of disease subtypes and stages 

Application: subtyping and staging new patients 

P
ro

ba
bi

lit
y 

Stage 
Stage

Subtype 
Subtype 

P
ro

ba
bi

lit
y 

SuStaIn 

[Young et al., Nature Communications 2018] 49

Courtesy of Springer Nature. Used under CC BY. 

https://www.nature.com/articles/s41467-018-05892-0/figures/1
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Subtype and Stage Inference (SuStaIn)	 

• Generative	 model for a data point: 
– Sample subtype c ~	 Categorical(f1,	 …, fC) 
– Sample stage t	~ Categorical(uniform) 
– For each biomarker i,	 sample xi ⇠ N (gc,i(t), �i) 

• Means are enforced to be monotonically increasing 
and piece-wise linear:

z1 t; 0<t tEtEz1 
z1 

z2 z1 Shown here for one z1 þ t ; tEz1 
<ttEz2 

tEz1 

tEz1 
tEz2 choice of c,i – no 

8 
>>>>>>>>>>>>< 

g tð Þ ¼  >>>>>>>>>>>>: 

... : parameter sharing across 
zR zR 1 t <tzR 1 þ tEzR 

tEzR 

tEzR 1 
; tEzR 1 

tEzR biomarkers or subtypes 
1 

max zRzR þ z 1 t tE ; tE <t 1tEzR 
zR zR 

[Young et al., Brain 2014; Young et al., Nature Communications 2018] 
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