7.014 Lectures 16 &17: The Biosphere & Carbon and Energy Metabolism

Simplified Summary of Microbial Metabolism

The metabolism of different types of organisms drives the biogeochemical cycles of the biosphere. Balanced oxidation and reduction reactions keep the system from "running down".

All living organisms can be ordered into two groups¹, autotrophs and heterotrophs, according to what they use as their carbon source. Within these groups the metabolism of organisms can be further classified according to their source of energy and electrons.

- <u>Autotrophs</u>: Those organisms get their energy from light (*photoautotrophs*) or reduced <u>in</u>organic compounds (*chemoautotrophs*), and their carbon from CO₂ through one of the following processes:
 - <u>Photosynthesis</u> (aerobic) Light energy used to reduce CO_2 to organic carbon using H_2O as a source of electrons. O₂ evolved from splitting H_2O . (*Plants, algae, cyanobacteria*)
 - <u>Bacterial Photosynthesis</u> (anaerobic) Light energy used to reduce CO_2 to organic carbon (same as photosynthesis). H₂S is used as the electron donor instead of H₂O. (*e.g. purple sulfur bacteria*)
 - <u>Chemosynthesis</u> (aerobic) Energy from the oxidation of inorganic molecules is used to reduce CO₂ to organic carbon (*bacteria only*).

e.g. sulfur oxidizing bacteria $H_2S \rightarrow S \rightarrow SO_4^{-2}$

nitrifying bacteria $NH_{4}^{+} \rightarrow NO_{2}^{-} \rightarrow NO_{3}^{-}$

iron oxidizing bacteria $\operatorname{Fe}^{^{+2}} \rightarrow \operatorname{Fe}^{^{+3}}$

methane oxidizing bacteria (methanotrophs) $CH_4 \rightarrow CO_2$

- <u>Heterotrophs</u>: These organisms get their energy and carbon from organic compounds (supplied by autotrophs through the food web) through one or more of the following processes:
 - <u>Aerobic Respiration</u> (aerobic) Oxidation of organic compounds to CO₂ and H₂O, yielding energy for biological work. O₂ is the final electron acceptor (All aerobic organisms -- *eukaryotes and prokaryotes*).
 - <u>Fermentation</u> (anaerobic) Glucose converted to pyruvate (yielding energy) which is then converted to a variety of end products (e.g. yeast oxidize glucose to ethanol, and anaerobic muscle oxidizes it to lactic acid). Glucose is not oxidized all the way to CO₂ as it is in aerobic respiration (*eukaryotes and prokaryotes*).
 - <u>Anaerobic Respiration</u> (anaerobic) Oxidation of organic compounds to CO_2 yielding energy for biological work. Final electron acceptor is not O_2 , but rather NO_3^- , SO_4^{-2} etc. (*prokaryotes only*)

denitrifying bacteria $NO_3^- \rightarrow NO(g) \rightarrow N_2O(g) \rightarrow N_2(g)$

sulfate reducing bacteria $SO_4^{-2} \rightarrow H_2S$

methanogens $CO_2 \rightarrow CH_4$

Thus all life is run on the free energy difference between O_2 and organic carbon (glucose). The autotrophs synthesize glucose using solar or chemical energy, which is broken down through respiration (either their own or that of the organisms that eat them) to provide the energy necessary for "biological work". Redox reactions are central to all of these energy transformations, and the resulting flows of electrons manifest themselves in the form of biogeochemical cycles. The activities of bacteria keep these cycles moving. For example, the chemosynthetic bacteria oxidize many essential elements in the process of getting the energy required to reduce CO_2 . Certain anaerobic bacteria in turn reduce these compounds in the process of anaerobic respiration — i.e., they use them as an electron acceptor in the absence of oxygen. **This keeps the element cycles flowing and keeps the system from "running down**".

¹ This summary is over-simplified. There are microbes that don't fit into this scheme. Some organisms are "mixotrophs" — i.e., they can switch between different modes of metabolism depending on the circumstances. Also, there are associations between organisms — i.e., "symbioses" which behave as a single organism with multiple modes of metabolism. Finally, there are microorganisms that have managed to break out of this general framework. Basically, if it can work thermodynamically, Nature has created a microbe that can do it.

GENERAL CLASSIFICATION OF MICROORGANISMS

	Carbon S	Source	Energy	/ Source	Electron Donor	
General classification	Inorganic (CO ₂) <u>Autotroph</u>	Organic <u>Heterotroph</u>	Light <u>Phototroph</u>	Chemical <u>Chemotroph</u>	Inorganic <u>Lithotroph</u>	Organic <u>Organotroph</u>
<u>Organisms</u>						
Phytoplankton	х		Х		H_2O	
Green and purple sulfur bacteria	x		х		H_2S	
Fungi & protozoa		Х		Х		Х
Most bacteria (heterotrophic)		Х		Х		Х
Nitrifying bacteria	Х			NH_4	NH4	
Sulfur oxidizing bacteria	Х			H_2S	H_2S	

Autotroph

(Quantities of compounds omitted for simplicity)

<u>"Dark reactions"</u> (common to all)

Photosynthesis

Heterotrophs

<u>Respiration</u> (Quantities of compounds omitted for simplicity)

$$ADP + P_i \longrightarrow ATP$$

Туре	A		B
aerobic	O ₂	\Rightarrow	H ₂ O
sulfate- reducing	SO4 ²⁻	\Rightarrow	H_2S or S
denitrifying	NO ₃ ⁻	\Rightarrow	NO, N ₂ , N ₂ O, NH ₃