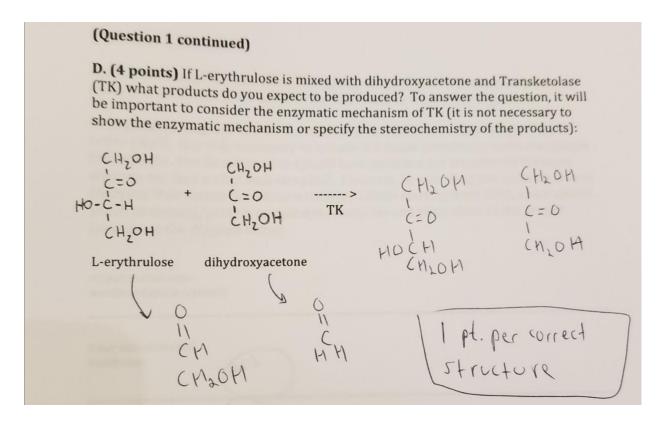
## QUESTION 1 (15 points)

Consider the following sugar (L-erythrulose):

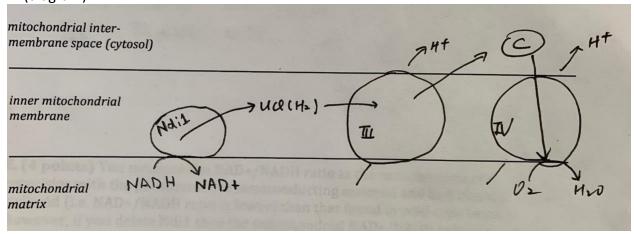
A. (4 points) Draw the products of the reaction catalyzed by Transketolase (TK) or Transaldolase (TA) if L-erythrulose is mixed with each of the following sugars (it is not necessary to specify the stereochemistry of the products):


L-erythrulose +

B. (5 points) Draw six products you expect to find if L-erythrulose is mixed with glycolaldehyde and BOTH Transketolase (TK) and Transaldolase (TA)(it is not necessary to specify the stereochemistry of the products):

11 CHZOH L-erythrulose + CH TK + TA glycolaldehyde 0 MOCH 140-j MCON (=0 MCDN CMZOH

C. (2 points) If you include 3-deazathiamin diphosphate (deazaTPP), an inhibitor of all TPP+ dependent enzymes, in the reaction described in part B, circle the sugar(s) in you answer to part B that will NOT be produced.


0.5 pts per correct circled structure



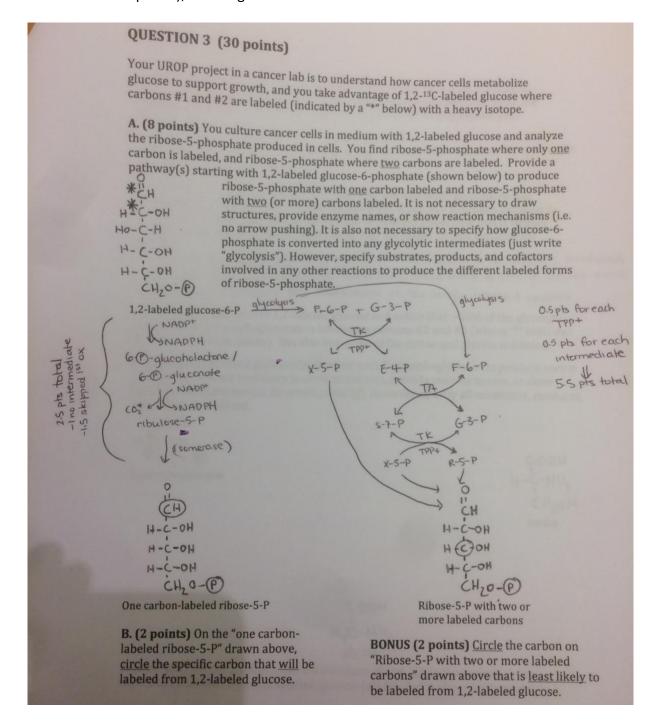
## Question 2:

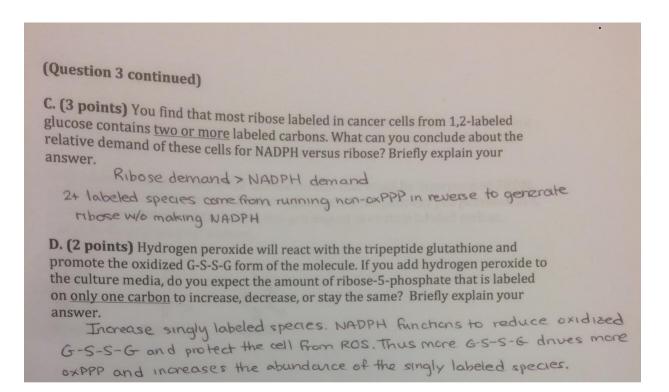
A. (3 points) 3: UQ/UQH2; 1: NAD+/NADH; 2: FMN/FMNH2 (1 point each)

### B. (diagram):



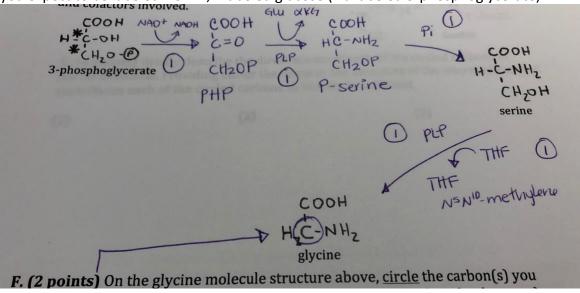
Not mentioning proton flow: lose 1 point per complex; Not mentioning UQ(H2): lose 1 point; Not mentioning cytochrome c: lose 1 point.


B. (3 points): Less (1 point), because Ndil does not pump protons, but complex I does (2 points).


**C**. (2 points): Same (1 point), because energy release is the same regardless how many steps in the middle (1 point).

**D**. (4 points): Yes (2 points). UQH2->complex III->cytochrome c->complex IV->O2. And complex III and IV pump protons, so they will create delta potential / delta pH, which can drive ATP synthesis (2 points).

E. (4 points): UQH2 can reduce NAD+ -> NADH via Ndil only if light produces UQH2.


**F.** (4 points): No (2 points). Multiple reasons are accepted: no rubisco (generally mentioning no co factors lose 2 points); cannot generate NADH etc.





**E (5points total – each labeled element in diagram is worth 1 point):** Provide a pathway(s) starting with 3-phosphoglycerate to produce serine and glycine. It is not necessary to draw structures, provide enzyme names, or show reaction mechanisms (i.e. no arrow pushing). However, specify all substrates, products, and cofactors involved.

**F (2 points total – all or nothing) :** On the glycine molecule structure above, circle the carbon(s) you expect to be labeled from 1,2-labeled glucose (via labeled 3-phosphoglycerate).



**G (4 points total – 2 for circling thymine only and 2 for the explanation**: Considering ONLY labeled carbon that you could be incorporated from serine and glycine from 1,2-labeled glucose

via the pathway you provided in E, circle each pyrimidine base below that you expect to contain labeled carbon. Very briefly explain your answer.

Thymine only is the answer. One carbon is donated through THF that methylates dU to form dT.

**H (4 points total – 1.3 each):** Briefly describe the direct source of each of the circled carbons in the purine synthesis. Providing either the name or the structure of the intermediate that contributes each of the circled carbons to inosine is sufficient.

- 1) N<sup>10</sup> formyl-THF
- 2) Glycine
- 3) N<sup>10</sup> formyl-THF

#### **Question 4:**

A (7 points): See below diagrams. The schematic/drawing of the enzyme complexes was not required; however, the reactions and their intermediates were. Written descriptions were also accepted. The inclusion of the following co-factors and substrates was awarded a point: ACC; Biotin; malonyl CoA, ACP, NADP+/NADPH. An additional two points were allocated and were deducted for incorrect statements about the pathway.

#### Malonyl-CoA Synthesis by ACC:

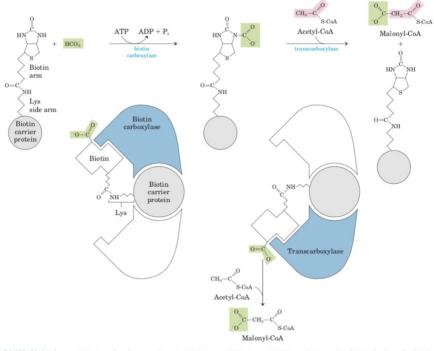
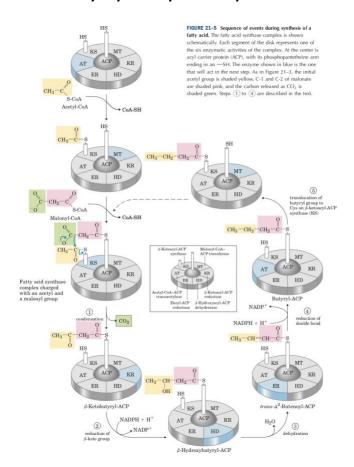




FIGURE 21-1 The acetyl-CoA carboxylase reaction. Acetyl-CoA carboxylase has three functional regions: biotin carrier protein (gray); biotin carboxylase, which activates CO<sub>2</sub> by attaching it to a nitrogen in the biotin ring in an ATP-dependent reaction (see Fig. 16–16); and transcarboxylase, which transfers activated CO<sub>2</sub> (shaded green) from

biotin to acetyl-CoA, producing malonyl-CoA. The long, flexible biotin arm carries the activated  $CO_2$  from the biotin carboxylase region to the transcarboxylase active site, as shown in the diagrams below the reaction arrows. The active enzyme in each step is shaded blue.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

#### 4 carbon fatty acyl-Coa synthesis by ACC:



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

**B** (3 points): High oxygen content in the water would compete for CO2 in Rubisco and lead to photorespiration. By generating CO2 in this step, this organism can keep CO2 levels higher to compete with oxygen. Some statement about how a high O2 concentration could interfere with carbon fixation was awarded partial credit. The mechanism including some description of Rubisco or photorespiration was awarded full points.

**C** (2 points): ACC is a critical regulatory step for fatty acid synthesis in humans. Without ACC, regulation must occur through a different set of enzymatic steps in this organism. Partial credit was given for some description that the regulation might be different because the pathway was different (ie no mention of ACC specifically).

**D** (3 points): Glucogenic amino acids can be broken down to OAA which is required for malonyl-CoA and fatty acid synthesis in this organism. Ketogenic amino acids could contribute via an acetyl-CoA to OAA conversion if there existed a glycoxlyate pathway in this organism — which does exist in many plants, bacteria, protists, and fungi. A correct description of glucogenic/ketogenic amino acids and their products was awarded partial credit, further credit was awarded for the understanding glucogenic amino acids would be required for fatty acid

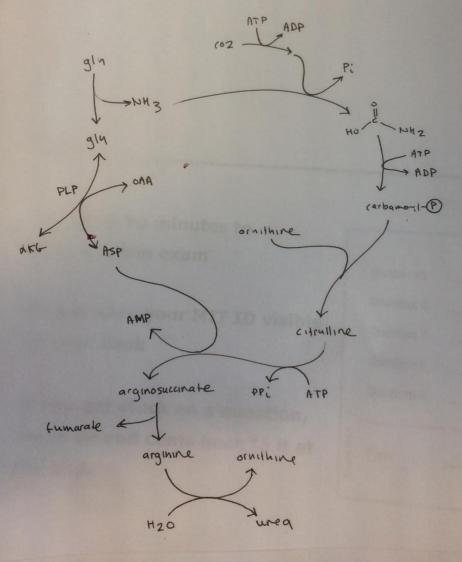
synthesis in this organism without the glycoxylate pathway, and the inclusion of the glycoxylate pathway for the use of ketogenic amino acids was required for full credit.

# QUESTION 5 (15 points)

Recently it was discovered that some cancer cells can catabolize proline (derived to glutamate via a series of oxidation reactions:

You add proline that contains isotopically labeled nitrogen to the culture media under conditions where the cells catabolize have conditions where the cells catabolize proline, that find that the cells excrete both ammonia (NH<sub>3</sub>) and glutamine (shown at right) that contain labeled nitrogen.

**A. (2 points)** Show the reaction that will allow glutamate with nitrogen derived from proline to produce ammonia. It is not necessary to specify enzyme names or show reactions mechanisms (i.e. no arrow pushing). However, make clear which substrates, products, and cofactors are involved.


**B. (3 points)** Show the reaction(s) that will allow labeled nitrogen from proline to produce glutantine with two labeled nitrogens. You do not need to show how proline is turned into glutamate with one labeled nitrogen (it occurs via the reactions shown above). It is also not necessary to provide structures, specify enzyme names, or show reactions mechanisms (i.e. no arrow pushing). However, make clear which substrates, products, and cofactors are involved.

**C.** (2 points) Will the oxidation of proline in the mitochondria to derive energy require access to oxygen? Briefly explain your reasoning.

# (Question 5 continued)

You analyze what is excreted into the blood from a prolineconsuming tumor, and find that here is a large amount of glutamine. You reason that this glutamine must be metabolized in the kidney to excrete the nitrogen from proline as urea.

**D.** (8 points) Show that reaction(s) that will allow the two nitrogens from glutamine to produce urea. It is not necessary to provide structures, specify enzyme names, or show reactions mechanisms (i.e. no arrow pushing). However, make clear which substrates, products, and cofactors are involved to incorporate the two nitrogens from glutamine into the same molecule of urea. Assume any necessary metabolites and cofactors are freely available.



MIT OpenCourseWare <a href="https://ocw.mit.edu/">https://ocw.mit.edu/</a>

7.05 General Biochemistry Spring 2020

For information about citing these materials or our Terms of Use, visit: <a href="https://ocw.mit.edu/terms">https://ocw.mit.edu/terms</a>.