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Topics


• Modeling Biological Systems


– A simple biological system 

– Model assumptions 

• Discrete Bayesian networks 

– Discretizing data 

– Bayesian scoring functions 

– Edge scores 



A simple biological system


•	 Data are observed from a biological subnetwork with four genes


•	 The genes might influence one anothers expression 

•	 The structure of the network is hidden from us (we do not see 

the edges) 

•	 We observe mRNA and active protein levels for each of the four


genes


We have hundreds of observations
•




Model assumptions


•	 There are no hidden variables (only A, B, C, and D can influence 

one another) 

•	 There are no cycles in the unknown network 

•	 ”Sufficient conditions” are observed to perturb the expession of


A, B, C, and D


All observed data are continuous
• 

•	 Data is complete (no missing variable observations)


•	 The underlying biological system can be modeled using discrete 

states 

•	 Uniform population behavior (Why is this important?)


•	 We begin with 8 nodes... 



Bayesian networks


•	 Nodes represent variables 

•	 Each node has 0 or more parents


•	 The structure S of edges describes how the joint probability dis­

tribution of the observed variables can be factored 

•	 S encodes the conditional independence of the observed variables


•	 To fully specify a network we need to specify how children depend 

on their parents 

•	 This dependency is encoded in the parameters θ 

•	 Given n variables, roughly how many structures are there?

2 •	 Less than (2n)n = 2n (Great!) 



Bayesian network tasks


•	 Learn the structure of a Bayesian network (S) given observed 

data (Structure Learning) 

•	 Learn a Bayesian network (S and θ) given observed data (Learn­

ing) 

•	 Infer Xj when it is not observed given S and θ (Inference) 



Discrete Bayesian Networks ­	 Interval discretization


• Sort the observed values from smallest to largest


• Divide range of observed values into L intervals


•	 Policy vector
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Quantile discretization


• Place an equal number of observations into L levels 

• Policy vector 
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How do we decide on the number of levels?


•	 We can begin with one level for each unique observed value


•	 If we start with L levels of discretization, we can reduce this to 
L − 1 by coalescing levels 

•	 Coalese two levels by adding the probabilities of the merged levels


•	 For example, we could start with 10 levels for 10 observations, 
and then reduce this to L = 1 



How should we merge levels?


• We could consider variables independently




How should we merge levels?


• Or consider preserving information between genes
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Total mutual information between variables


Let vector Xi
L be the discretization of variable Xi from all obser­• 

vations into L levels 

Define the total mutual information between all Xi
L at discretiza­• 

tion level L as: 

TMI(L) = H(Xi
L) + H(Xj

L) − H(Xi
L, Xj

L) (5) 
i,j 

•	 Mutual information is 0 when variables are independent 

H(Xi
L) is a measure of the randomness of XL 

i• 

H(Xi
L) = − p(Xi

L)log(p(Xi
L)) (6) 

XL 
i 

H(Xi
L, Xj

L) is the mutual entropy of XL and XL 
i	 j• 

H(Xi
L, Xj

L) = − p(Xi
L, Xj

L)log(p(Xi
L, Xj

L))	 (7) 
Xi

L,Xj
L 



Total mutual information as a function of L


•	 When we go from L to L− 1, pick the levels to merge to minimize 

TMI(L) − TMI(L − 1) 

•	 As we decrease L, TMI(L) decreases: 

• Pick an L that captures most of the information


•	 Why do we want to reduce L? 



� 

The Bayesian scoring metric


•	 The Bayesian score of model S given observed data D can be 

decomposed into a likelihood and a prior 

BayesianScore(S) = log p(S|D) (8) 

= log p(S) + log p(D|S) + c (9) 

•	 The likelihood function is computed as follows 

p(D|S) = p(D, θ|S)dθ	 (10) �θ 

= p(D|θ, S)p(θ S)dθ (11) 
θ	

|



Parameters for discrete Bayesian networks


•	 Index the n variables in the Bayesian network using the variable i


•	 Index the qi parent configurations of variable i using the variable 

j 

•	 Index the ri states of variable i using the variable k 

•	 θijk is the probability of observing variable i in state k given parent 

configuration j 

(θij1, . . . , θijri
) Dirichlet(αij1, . . . , αijri

) ∀i, j (12)∼ 

∼ 
αij1−1 αij2−1 αijri

−1	
(13). . . θ c	· θij1 θij2 ijri 

•	 α are the hyperparameters 
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Scoring discrete Bayesian networks


•	 Assign each observation to a single level


•	 Let Nijk be the number of occurrences in the data set D of 

variable i in state k given parent configuration j and 

ri

Nij = Nijk (14) 
k=1 

ri

αij = αijk (15) 
k=1 

•	 The Bayesian score of S (see Heckerman on the Web site) is: 

n
⎧⎨ 

⎞ 
qi Γ(αij ) ri

⎛ ⎫⎬
Γ(αijk + Nijk)
⎝
 ⎠
log p(S) + log
 ⎭⎫⎬ 

(16)
Γ(αij + Nij ) 

·	
Γ(αijk)k=1 

⎩

i=1 j=1 

qi
⎧	⎨ ⎭Γ(αijk + Nijk) 

(17) 
n

log p(S) + log 
Γ(αij )

+ 
ri

log⎩
 Γ(αij + Nij ) Γ(αijk)i=1 j=1 k=1




Example: Yeast pheromone response pathway


Image removed for copyright reasons.



Total mutual information as a function of L


•	 We start with 320 experiments with L = 160 and run the level 

merging algorithm that minimizes the loss in total mutual infor­

mation 

0 20 40 60 80 100 120 140 160
0

0.005

0.01

0.015

0.02

0.025

0.03

• L = 4 for scoring




Model search: distribution of model scores


Histogram of model scores using a random walk and simulated 

annealing. Note that simulated annealing does not get stuck as 

easily 
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Model averaging


•	 Integrating over all possible parameters protects us from overfit­

ting parameters 

•	 We can provide some protection against overfitting model struc­

ture by averaging over the model posterior distribution 

p(EXY |D) = p(EXY , S|D) (18) 
S 

= p(EXY |D, S) · p(S D)	 (19)|
S 

= 1XY (S) · eBayesianScore(S) (20) 
S 



Model search: edge consensus of top 50 models


Edge colors: black 109, purple 106 − 109, dark blue 103 − 106, 

light blue 1 − 103 



Model search: edge consensus of top 50

constrained models




How can we model these?


turns on 
lowers 
represses 
deinhibits 
methylates 
dephosphorylates 
reduces 
translates 
catalyzes 
binds 
silences 
promotes 
is necessary for 
is a factor in 

turns off 
activates 
derepresses 
expresses 
demethylates 
protects 
oxidizes 
regulates 
metabolizes 
initiates 
stimulates 
requires 
is a component of 

raises 
deactivates 
inhibits 
suppresses 
phosphorylates 
deprotects 
transcribes 
controls 
ligates 
enhances 
induces 
elevates 
is a substitute for 
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Idea ­ use the parameter prior!


Recall the likelihood function is: • 

p(D|S) = p(D, θ|S)dθ	 (21) �θ 

= p(D|θ, S)p(θ S)dθ (22) 
θ	

|

•	 We can use p(θ|S) to model relationships


•	 For example, to represent a positive edge from X to Y , for all 

values y of Y , and for all values xi < xj of X we constrain θ so 

that: 

p(Y > y X = xi) ≤ p(Y > y X = xj)	 (23)|	 |


