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Topics

e Modeling Biological Systems
— A simple biological system
— Model assumptions

e Discrete Bayesian networks
— Discretizing data
— Bayesian scoring functions
— Edge scores



A simple biological system

Data are observed from a biological subnetwork with four genes
The genes might influence one anothers expression

The structure of the network is hidden from us (we do not see
the edges)

We observe mMRNA and active protein levels for each of the four
genes

We have hundreds of observations



Model assumptions

There are no hidden variables (only A, B, C, and D can influence
one another)

There are no cycles in the unknown network

"Sufficient conditions” are observed to perturb the expession of
A, B, C, and D

All observed data are continuous
Data is complete (no missing variable observations)

The underlying biological system can be modeled using discrete
states

Uniform population behavior (Why is this important?)

We begin with 8 nodes...



Bayesian networks

Nodes represent variables
Each node has O or more parents

The structure S of edges describes how the joint probability dis-
tribution of the observed variables can be factored

S encodes the conditional independence of the observed variables

To fully specify a network we need to specify how children depend
on their parents

This dependency is encoded in the parameters 0
Given n variables, roughly how many structures are there?
Less than (2™)" = on? (Great!)



Bayesian network tasks

e Learn the structure of a Bayesian network (S) given observed
data (Structure Learning)
e Learn a Bayesian network (S and 6) given observed data (Learn-

ing)
e Infer X; when it is not observed given S and 6 (Inference)



Discrete Bayesian Networks - Interval discretization

e Sort the observed values from smallest to largest
e Divide range of observed values into L intervals

e Policy vector
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Quantile discretization

e Place an equal number of observations into L levels

e Policy vector
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How do we decide on the number of levels?

We can begin with one level for each unique observed value

If we start with L levels of discretization, we can reduce this to
L — 1 by coalescing levels

Coalese two levels by adding the probabilities of the merged levels

For example, we could start with 10 levels for 10 observations,
and then reduce thisto L =1




How should we merge levels?

e \We could consider variables independently
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How should we merge levels?

e Or consider preserving information between genes

£y
LS
&




Total mutual information between variables

Let vector X,—L-L be the discretization of variable X; from all obser-

vations into L levels

Define the total mutual information between all X,L-L at discretiza-

tion level L as:
TMI(L) =Y H(X}) + H(xE) — H(XE, XT)
1,J
Mutual information is O when variables are independent

H(XZ-L) is @ measure of the randomness of XiL

H(XP) = =3 p(XP)iog(p(XF))
Xt

H (X}, X{) is the mutual entropy of X} and X/

HXF, xF)y=- Y pxF XPlogp(xF, XF))
L L
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Total mutual information as a function of L

e \When we go from L to L—1, pick the levels to merge to minimize
TMI(L) —TMI(L—1)

e As we decrease L, TMI(L) decreases:
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e Pick an L that captures most of the information

e WWhy do we want to reduce L7



T he Bayesian scoring metric

e [ he Bayesian score of model S given observed data D can be
decomposed into a likelihood and a prior

BayesianScore(S) = logp(S|D) (8)
= logp(S) + logp(D|S) + ¢ (9)

e T he likelihood function is computed as follows
p(DIS) = | p(D,6]S)d8 (10)

= /0p<D|e,s>p<e|s>de (11)



Parameters for discrete Bayesian networks

Index the n variables in the Bayesian network using the variable 2
Index the g; parent configurations of variable ¢ using the variable
J

Index the r; states of variable ¢ using the variable k

Hz-jk IS the probability of observing variable 7 in state k given parent
configuration j

(eijlv ceey Qijri) ~ Dirichlet(ozijl, Ceey O‘ijri) Vi, 9 (12)
ajj1—1 pog0—1 jr, —1
o are the hyperparameters



Scoring discrete Bayesian networks

e AsSsign each observation to a single level
e Let N, be the number of occurrences in the data set D of
variable ¢ in state k£ given parent configuration 53 and

ri
Nij = Y Niji (14)
k=1

T
o = ) Qg (15)
k=1
e The Bayesian score of S (see Heckerman on the Web site) is:
n o 4 (o ) |_(Oz-- + N )
logp(S) +1og{ [1 1I |+ o) [[ —2—1% ) Y16)
i—=1 =1 \I (i + Nij) = Tlagp)
n g r(a. ) Ty r(Oé@' ” + Ni k)
log p(S) + {log Y + log J I X1T)
2 2 (o + Nij) kzzjl (k)
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Example: Yeast pheromone response pathway

Image removed for copyright reasons.



Total mutual information as a function of L

e \We start with 320 experiments with L = 160 and run the level
merging algorithm that minimizes the loss in total mutual infor-
mation
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e [L =4 for scoring



Model search: distribution of model scores

Histogram of model scores using a random walk and simulated
annealing. Note that simulated annealing does not get stuck as
easily




Model averaging

e Integrating over all possible parameters protects us from overfit-
ting parameters

e \We can provide some protection against overfitting model struc-
ture by averaging over the model posterior distribution

p(Exy|D) = ) p(Exy,S|D) (18)
S

= > p(Exyl|D,S)-p(S|D) (19)
S

— Z 1XY(S) . eBayesicmScore(S) (20)
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Model search: edge consensus of top 50 models

Edge colors: black 109, purple 10° — 109, dark blue 103 — 10°,
light blue 1 — 103
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Model search: edge consensus of top 50
constrained models




How can we model these?

turns on

lowers
represses
deinhibits
methylates
dephosphorylates
reduces
translates
catalyzes

binds

silences
promotes

IS necessary for
is a factor in

turns off
activates
derepresses
expresses
demethylates
protects
oxidizes
regulates
metabolizes
initiates
stimulates
requires

IS a component of

raises
deactivates
inhibits
suppresses
phosphorylates
deprotects
transcribes
controls
ligates
enhances
induces
elevates

IS a substitute for



Idea - use the parameter prior!

e Recall the likelihood function is:
p(DIS) = [ p(D,0]5)d0 (21)

= | p(DI6, S)p(6]S)d0 (22)

e We can use p(0|S) to model relationships

e For example, to represent a positive edge from X to Y, for all
values y of Y, and for all values z; < x; of X we constrain 6 so
that:

p(Y > y|X ==z;) <p(Y > y|X = ;) (23)



