7.90J 6.874J Computational functional genomics

 (Spring 2005: Lecture 13)David K. Gifford
(Adapted from a lecture by Tommi S. Jaakkola) MIT CSAIL

Topics

- Modeling Biological Systems
- A simple biological system
- Model assumptions
- Discrete Bayesian networks
- Discretizing data
- Bayesian scoring functions
- Edge scores

A simple biological system

- Data are observed from a biological subnetwork with four genes
- The genes might influence one anothers expression
- The structure of the network is hidden from us (we do not see the edges)
- We observe mRNA and active protein levels for each of the four genes
- We have hundreds of observations

Model assumptions

- There are no hidden variables (only A, B, C, and D can influence one another)
- There are no cycles in the unknown network
- "Sufficient conditions" are observed to perturb the expession of A, B, C, and D
- All observed data are continuous
- Data is complete (no missing variable observations)
- The underlying biological system can be modeled using discrete states
- Uniform population behavior (Why is this important?)
- We begin with 8 nodes...

Bayesian networks

- Nodes represent variables
- Each node has 0 or more parents
- The structure S of edges describes how the joint probability distribution of the observed variables can be factored
- S encodes the conditional independence of the observed variables
- To fully specify a network we need to specify how children depend on their parents
- This dependency is encoded in the parameters θ
- Given n variables, roughly how many structures are there?
- Less than $\left(2^{n}\right)^{n}=2^{n^{2}}$ (Great!)

Bayesian network tasks

- Learn the structure of a Bayesian network (S) given observed data (Structure Learning)
- Learn a Bayesian network (S and θ) given observed data (Learning)
- Infer X_{j} when it is not observed given S and θ (Inference)

Discrete Bayesian Networks - Interval discretization

- Sort the observed values from smallest to largest
- Divide range of observed values into L intervals
- Policy vector

$$
\begin{array}{r}
\wedge=\left(-\infty, x_{0}+\frac{\left(x_{N-1}-x_{0}\right)}{L}, x_{0}+\frac{2\left(x_{N-1}-x_{0}\right)}{L}, \ldots,\right. \\
\left.x_{0}+\frac{(L-1)\left(x_{N-1}-x_{0}\right)}{L}, \infty\right) \tag{2}
\end{array}
$$

Quantile discretization

- Place an equal number of observations into L levels
- Policy vector

$$
\begin{equation*}
\wedge=\left(-\infty, \frac{x_{\left\lfloor\frac{N}{L}\right\rfloor}+x^{\left\lfloor\frac{N}{L}\right\rfloor+1}}{2}, \frac{x\left\lfloor\frac{2 N}{L}\right\rfloor}{}+x\left\lfloor\frac{2 N}{L}\right\rfloor+1 ~\left(\frac{x}{2}, \ldots,\right.\right. \tag{3}
\end{equation*}
$$

How do we decide on the number of levels?

- We can begin with one level for each unique observed value
- If we start with L levels of discretization, we can reduce this to $L-1$ by coalescing levels
- Coalese two levels by adding the probabilities of the merged levels
- For example, we could start with 10 levels for 10 observations, and then reduce this to $L=1$

How should we merge levels?

- We could consider variables independently

How should we merge levels?

- Or consider preserving information between genes

Total mutual information between variables

- Let vector X_{i}^{L} be the discretization of variable X_{i} from all observations into L levels
- Define the total mutual information between all X_{i}^{L} at discretization level L as:

$$
\begin{equation*}
T M I(L)=\sum_{i, j} H\left(X_{i}^{L}\right)+H\left(X_{j}^{L}\right)-H\left(X_{i}^{L}, X_{j}^{L}\right) \tag{5}
\end{equation*}
$$

- Mutual information is 0 when variables are independent
- $H\left(X_{i}^{L}\right)$ is a measure of the randomness of X_{i}^{L}

$$
\begin{equation*}
H\left(X_{i}^{L}\right)=-\sum_{X_{i}^{L}} p\left(X_{i}^{L}\right) \log \left(p\left(X_{i}^{L}\right)\right) \tag{6}
\end{equation*}
$$

- $H\left(X_{i}^{L}, X_{j}^{L}\right)$ is the mutual entropy of X_{i}^{L} and X_{j}^{L}

$$
\begin{equation*}
H\left(X_{i}^{L}, X_{j}^{L}\right)=-\sum_{X_{i}^{L}, X_{j}^{L}} p\left(X_{i}^{L}, X_{j}^{L}\right) \log \left(p\left(X_{i}^{L}, X_{j}^{L}\right)\right) \tag{7}
\end{equation*}
$$

Total mutual information as a function of L

- When we go from L to $L-1$, pick the levels to merge to minimize $T M I(L)-T M I(L-1)$
- As we decrease $L, T M I(L)$ decreases:

- Pick an L that captures most of the information
- Why do we want to reduce L ?

The Bayesian scoring metric

- The Bayesian score of model S given observed data D can be decomposed into a likelihood and a prior

$$
\begin{align*}
\operatorname{BayesianScore}(S) & =\log p(S \mid D) \tag{8}\\
& =\log p(S)+\log p(D \mid S)+c \tag{9}
\end{align*}
$$

- The likelihood function is computed as follows

$$
\begin{align*}
p(D \mid S) & =\int_{\theta} p(D, \theta \mid S) \mathrm{d} \theta \tag{10}\\
& =\int_{\theta} p(D \mid \theta, S) p(\theta \mid S) \mathrm{d} \theta \tag{11}
\end{align*}
$$

Parameters for discrete Bayesian networks

- Index the n variables in the Bayesian network using the variable i
- Index the q_{i} parent configurations of variable i using the variable j
- Index the r_{i} states of variable i using the variable k
- $\theta_{i j k}$ is the probability of observing variable i in state k given parent configuration j

$$
\begin{align*}
\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right) & \sim \operatorname{Dirichlet}\left(\alpha_{i j 1}, \ldots, \alpha_{i j r_{i}}\right) \tag{12}\\
& \sim c \cdot \theta_{i j 1}^{\alpha_{i j 1}-1} \theta_{i j 2}^{\alpha_{i j 2}-1} \ldots \theta_{i j r_{i}}^{\alpha_{i j r_{i}}-1} \tag{13}
\end{align*} \quad \forall i, j
$$

- α are the hyperparameters

Scoring discrete Bayesian networks

- Assign each observation to a single level
- Let $N_{i j k}$ be the number of occurrences in the data set D of variable i in state k given parent configuration j and

$$
\begin{align*}
N_{i j} & =\sum_{k=1}^{r_{i}} N_{i j k} \tag{14}\\
\alpha_{i j} & =\sum_{k=1}^{r_{i}} \alpha_{i j k} \tag{15}
\end{align*}
$$

- The Bayesian score of S (see Heckerman on the Web site) is:

$$
\begin{aligned}
& \log p(S)+\log \left\{\prod_{i=1}^{n} \prod_{j=1}^{q_{i}}\left(\frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)} \cdot \prod_{k=1}^{r_{i}} \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}\right)\right\}(16) \\
& \log p(S)+\sum_{i=1}^{n} \sum_{j=1}^{q_{i}}\left\{\log \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)}+\sum_{k=1}^{r_{i}} \log \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}\right\}(17)
\end{aligned}
$$

Example: Yeast pheromone response pathway

Image removed for copyright reasons.

Total mutual information as a function of L

- We start with 320 experiments with $L=160$ and run the level merging algorithm that minimizes the loss in total mutual information

- $L=4$ for scoring

Model search: distribution of model scores

Histogram of model scores using a random walk and simulated annealing. Note that simulated annealing does not get stuck as easily

Model averaging

- Integrating over all possible parameters protects us from overfitting parameters
- We can provide some protection against overfitting model structure by averaging over the model posterior distribution

$$
\begin{align*}
p\left(E_{X Y} \mid D\right) & =\sum_{S} p\left(E_{X Y}, S \mid D\right) \tag{18}\\
& =\sum_{S} p\left(E_{X Y} \mid D, S\right) \cdot p(S \mid D) \tag{19}\\
& =\sum_{S} 1_{X Y}(S) \cdot e^{\text {BayesianScore }(S)} \tag{20}
\end{align*}
$$

Model search: edge consensus of top 50 models
Edge colors: black 10^{9}, purple $10^{6}-10^{9}$, dark blue $10^{3}-10^{6}$, light blue $1-10^{3}$

Model search: edge consensus of top 50 constrained models

How can we model these?

turns on
lowers
represses
deinhibits
methylates
dephosphorylates
reduces
translates
catalyzes
binds
silences
promotes
is necessary for
is a factor in
turns off
activates
derepresses
expresses
demethylates
protects
oxidizes
regulates
metabolizes
initiates
stimulates
requires
is a component of
raises
deactivates
inhibits
suppresses
phosphorylates
deprotects
transcribes
controls
ligates
enhances
induces
elevates
is a substitute for

Idea - use the parameter prior!

- Recall the likelihood function is:

$$
\begin{align*}
p(D \mid S) & =\int_{\theta} p(D, \theta \mid S) \mathrm{d} \theta \tag{21}\\
& =\int_{\theta} p(D \mid \theta, S) p(\theta \mid S) \mathrm{d} \theta \tag{22}
\end{align*}
$$

- We can use $p(\theta \mid S)$ to model relationships
- For example, to represent a positive edge from X to Y, for all values y of Y, and for all values $x_{i}<x_{j}$ of X we constrain θ so that:

$$
\begin{equation*}
p\left(Y>y \mid X=x_{i}\right) \leq p\left(Y>y \mid X=x_{j}\right) \tag{23}
\end{equation*}
$$

