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Gene similarities revealed by dot plot

promoter
conservation
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Dot Plots
Align subsequences of S1 and S2; place dot 
when score is high
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Pairwise Alignment (Global)
Given a query sequence x, what is the 
best alignment to a sequence y?

(A, C, G, U, -)RNA

(A, C, G, T, N, -, W, S, R, Y, K, M, B, D, H, V)DNA

(20 letters, X, -)Protein

sq probability of symbol s occurring at random 
in a sequence.



Two possible models

• Model R - Random– The sequences are 
unrelated and were generated by coin flips 
(biased)

• Model M – Match – The sequences were 
derived from a common ancestor 
sequence



A Probabilistic Model of Alignment
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The Odds Ratio Statistic 
(No Gaps)
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Example
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Substitution Matrix
• Logical to think of it in terms of evolutionary time

• PAM (Point Accepted Mutations): Based on 
substitution data from alignment between similar proteins 
– (1% expected substitutions = 1PAM)
– PAMn = (1PAM)n

• BLOSUM (BLOck Scoring Matrix): Multiple alignment 
of distantly related proteins
– BlosumL = Sequences with L% or more of identical residues 

were clustered to compute log-odds ratio
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BLOSUM50
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BLOSUM65
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Gap Penalties

• We can penalize a gap with the function

• Typical gap penalties in practice for proteins
– d=8 third-bits used in Durbin

• We can also add a fixed penalty for opening a gap

gd−
where g is the length of the gap



Affine gaps

• Assume log odds-ratio of a gap deceases 
geometrically:
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Let’s find the best alignment

• To do this we will maximize the score, 
taking into account our ability to 
incorporate gaps

• We could enumerate all of the possible 
alignments…



How many possible alignments 
exist?
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Yikes!



Needleman-Wunsch (global)

• F(i,j) = score of best alignment of

• Suppose F(i-1,j-1), F(i-1,j), F(i,j-1) are known

ix ...1 jy ...1and
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Example: Needleman-Wunsch



Example: Needleman-Wunsch
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Smith-Waterman (Local Alignment)
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• Key idea is to look for best alignment between 
subsequences

• Expected score of random match must be 
negative



Example: Smith-Waterman
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What does a score mean?

• How can we tell if our match is significant?

• Isn’t this related to the size of the query 
and the database?



Being Bayesian

• Assume a casino uses a loaded die 1% of 
the time.

• A loaded die will come up six 50% of the 
time.

• You pick up a die at the casino and roll it 
three times, getting three sixes.

• What is the chance the die is loaded?



Being Bayesian: II
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Comparing Models (Bayesian)
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Comparing Models (Bayesian)
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Comparing Models (Bayesian II)
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• Global alignment: compare S with log N
• Local alignment: compare S with log MN



Classical Approach: 
Extreme Value Distribution

• Expected number of unrelated matches for a 
local alignment (E-value)

• Used by BLAST

SKmnSE λ−= 2)(



Building Phylogenetic Trees

• Unweighted pair group method using 
arithmetic averages (UPGMA)

• Clusters sequences based on evolutionary 
distance



Example: UPGMA
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Parsimony-based 
Phylogenetic Trees

• Build all possible trees

• Choose tree that uses fewest number of 
substitutions



Example: Parsimony
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