Pairwise Alignment

 (or models and algorithms are your friend)Lecture 2
6.874J/7.90J/6.807

David Gifford

Gene similarities revealed by dot plot

Image removed for copyright reasons.

Dot Plots

Align subsequences of S1 and S2; place dot when score is high

Image removed for copyright reasons.

Pairwise Alignment (Global)

Given a query sequence x, what is the best alignment to a sequence y ?

$$
\begin{aligned}
& \text { y HEAGAWGME-E } \\
& \text { x --P-AW-MEAE }
\end{aligned}
$$

Protein (20 letters, $\mathrm{X},-$)
DNA (A, C, G, T, N, -, W, S, R, Y, K, M, B, D, H, V)
RNA (A, C, G, U, -)
$q_{S} \quad \begin{aligned} & \text { probability of symbol } \text { in a sequence. }\end{aligned}$

Two possible models

- Model R - Random- The sequences are unrelated and were generated by coin flips (biased)
- Model M - Match - The sequences were derived from a common ancestor sequence

A Probabilistic Model of Alignment

$$
P(x, y \mid R)=\prod_{i} q_{x_{i}} \prod_{j} q_{y_{j}}
$$

Joint probability that a and b
$P_{a b} \quad$ have been originally derived from some (unknown) ancestor c (might be the same as a or b)

$$
P(x, y \mid M)=\prod_{i} P_{x_{i} y_{i}}
$$

The Odds Ratio Statistic (No Gaps)

$$
\begin{aligned}
& \frac{P(x, y \mid M)}{P(x, y \mid R)}=\prod_{i} \frac{P_{x_{i} y_{i}}}{q_{x_{i}} q_{y_{i}}} \\
& S=\log \left(\frac{P(x, y \mid M)}{P(x, y \mid R)}\right)=\log \prod_{i} \frac{P_{x_{i} y_{i}}}{q_{x_{i}} q_{y_{i}}} \\
& S=\sum_{i} S\left(x_{i}, y_{i}\right) \\
& S(a, b)=\log \frac{P_{a b}}{q_{a} q_{b}}
\end{aligned}
$$

Example

$$
\begin{aligned}
& x_{1}=C \quad y_{1}=Q \\
& q_{x_{1}}=\frac{1}{20} \quad q_{y_{1}}=\frac{1}{20} \quad q_{x_{1} y_{1}}=\frac{1}{400} \\
& P_{x_{1} y_{1}}=P_{C Q}=\frac{1}{800} \\
& S_{x_{1} y_{1}}=S_{C Q}=3 \log _{2}\left(\frac{\frac{1}{\frac{800}{1}}}{400}\right)= \\
& \\
& 3 \log _{2}(1 / 2)=-3
\end{aligned}
$$

Substitution Matrix

- Logical to think of it in terms of evolutionary time

$$
S(a, b \mid t)
$$

- PAM (Point Accepted Mutations): Based on substitution data from alignment between similar proteins
$-(1 \%$ expected substitutions $=1$ PAM $)$
- PAMn = (1PAM) ${ }^{n}$
- BLOSUM (BLOck Scoring Matrix): Multiple alignment of distantly related proteins
- BlosumL = Sequences with L\% or more of identical residues were clustered to compute log-odds ratio

BLOSUM50

Image removed for copyright reasons.

BLOSUM65

Image removed for copyright reasons.

Gap Penalties

- We can penalize a gap with the function

$$
-g d
$$

where g is the length of the gap

- Typical gap penalties in practice for proteins
- d=8 third-bits used in Durbin
- We can also add a fixed penalty for opening a gap

Affine gaps

- Assume log odds-ratio of a gap deceases geometrically:

$$
\begin{aligned}
& f(g)=p(1-p)^{g-1} \\
& \log f(g)=\log p+(g-1) \log (1-p) \\
& d=-\log p \\
& e=-\log (1-p) \\
& \log f(g)=-d-(g-1) e \\
& s(g)=-d-(g-1) e
\end{aligned}
$$

Let's find the best alignment

- To do this we will maximize the score, taking into account our ability to incorporate gaps
- We could enumerate all of the possible alignments...

How many possible alignments exist?

An intercalation of x and y (discards gaps):
$x_{1}, x_{2}, \ldots, x_{n}$

$$
x_{1} y_{1} x_{2} y_{2} \ldots x_{n} y_{n}
$$

$y_{1}, y_{2}, \ldots, y_{n}$

$$
\begin{aligned}
& \binom{2 n}{n} \quad \begin{array}{l}
\text { intercalations } \\
\text { exist... }
\end{array} \\
& \approx \frac{2^{2 n}}{\sqrt{\pi n}} \text { Yikes! }
\end{aligned}
$$

Needleman-Wunsch (global)

- $F(i, j)=$ score of best alignment of

$$
x_{1 \ldots i} \quad \text { and } \quad y_{1 \ldots j}
$$

- Suppose $F(i-1, j-1), F(i-1, j), F(i, j-1)$ are known

$$
\begin{aligned}
& F(0,0)=0 \\
& F(i, j)=\max \left\{\begin{array}{c}
F(i-1, j-1)+s\left(x_{i}, y_{i}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d
\end{array}\right\}
\end{aligned}
$$

Example: Needleman-Wunsch

$$
\begin{aligned}
& \text { y HEAGAWGME-E } \\
& \mathrm{x}-\mathrm{P}-\mathrm{AW}-\mathrm{MEAE}
\end{aligned}
$$

Example: Needleman-Wunsch

Image removed for copyright reasons.

Smith-Waterman (Local Alignment)

$$
\begin{aligned}
& F(0,0)=0 \\
& F(i, j)=\max \left\{\begin{array}{c}
0, \\
F(i-1, j-1)+s\left(x_{i}, y_{i}\right), \\
F(i-1, j)-d \\
F(i, j-1)-d
\end{array}\right\}
\end{aligned}
$$

- Key idea is to look for best alignment between subsequences
- Expected score of random match must be negative

Example: Smith-Waterman

Image removed for copyright reasons.

What does a score mean?

- How can we tell if our match is significant?
- Isn't this related to the size of the query and the database?

Being Bayesian

- Assume a casino uses a loaded die 1% of the time.
- A loaded die will come up six 50% of the time.
- You pick up a die at the casino and roll it three times, getting three sixes.
- What is the chance the die is loaded?

Being Bayesian: II

$$
\begin{aligned}
& P(X \mid Y) P(Y)=P(Y \mid X) P(X) \\
& P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)} \\
& \begin{aligned}
P\left(D_{\text {loaded }} \mid 3 \text { sixes }\right) & =\frac{P\left(3 \text { sixes } \mid D_{\text {loaded }}\right) P\left(D_{\text {loaded }}\right)}{P(3 \text { sixes })} \\
& =\frac{(0.5)^{3}(0.01)}{(0.5)^{3}(0.01)+(1 / 6)^{3}(0.99)} \\
& =0.21
\end{aligned}
\end{aligned}
$$

Comparing Models (Bayesian)

$$
P(M \mid x, y)=\frac{P(x, y \mid M) P(M)}{P(x, y)}
$$

$$
=\frac{P(x, y \mid M) P(M)}{P(x, y \mid M) P(M)+P(x, y \mid R) P(R)}
$$

$$
=\frac{P(x, y \mid M) P(M) / P(x, y \mid R) P(R)}{1+P(x, y \mid M) P(M) / P(x, y \mid R) P(R)}
$$

Comparing Models (Bayesian)

$$
\begin{aligned}
P(M \mid x, y) & =\frac{P(x, y \mid M) P(M) / P(x, y \mid R) P(R)}{1+P(x, y \mid M) P(M) / P(x, y \mid R) P(R)} \\
& =\frac{e^{S^{\prime}}}{1+e^{S^{\prime}}}
\end{aligned}
$$

where $\quad S^{\prime}=S+\log (P(M) / P(R))$

Comparing Models (Bayesian II)

$$
\begin{aligned}
& P(M \mid x, y)=G\left(S^{\prime}\right) \\
& G(x)=\frac{e^{x}}{1+e^{x}} \\
& S^{\prime}=S+\log (P(M) / P(R))
\end{aligned}
$$

- Global alignment: compare S with $\log N$
- Local alignment: compare S with $\log M N$

Classical Approach: Extreme Value Distribution

- Expected number of unrelated matches for a local alignment (E-value)

$$
E(S)=K m n 2^{-\lambda S}
$$

- Used by BLAST

Building Phylogenetic Trees

- Unweighted pair group method using arithmetic averages (UPGMA)
- Clusters sequences based on evolutionary distance

Example: UPGMA

Image removed for copyright reasons.

Parsimony-based Phylogenetic Trees

- Build all possible trees
- Choose tree that uses fewest number of substitutions

Example: Parsimony

Image removed for copyright reasons.

Fin

