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Finding regulatory sequences in DNA: motif discovery 

The purpose of motif discovery as discussed here is to find binding sites of DNA binding 
regulators. We assume that the binding sites are short segments of DNA, not necessarily 
contiguous, to which a specific (family of) transcription factors can bind. While such sites 
may appear in genic as well as intergenic regions, we focus here on finding binding sites 
only in the promoter region of each gene. It’s worthwhile to note that the existence of a 
binding site is no guarantee that the site (the corresponding TF) plays a role in regulating 
the gene in question; the site may not be accessible due to chromatin structure, may never 
be occupied due to resource constraints and higher affinity sites elsewhere, and so on. 
Nevertheless, knowing who could participate in regulating each gene, and finding where 
they bind at a basepair resolution, is a useful source of information. 

There are several strategies we could follow to try to find such sites. For example, if we have 
genomes of two related species, simply aligning the promoter regions of orthologous genes 
(or aligning the whole genomes) would reveal interspersed segments of DNA that are highly 
conserved across the two species. The binding sites of DNA binding regulators are likely 
to fall within the conserved segments because of the evolutionary pressure to maintain 
the regulatory programs. The fraction of conserved segments that are interpretable as 
binding sites within, say, a promoter region, depends on the evolutionary distance between 
the species (time that they have evolved independently). Sufficient time is required for 
inessential portions of the sequences to diverge. Considering more than two related species 
would help emphasize the signal. For more information about this approach, see, e.g., 
Kellis, 2003. 

We will follow here another approach, searching for binding sites of regulators within a 
single genome. We start with a set of genes that are likely to share regulators (bindings 
sites of regulators); a random subset of the genes are unlikely to share any regulators of 
interest. Note that it is not necessary to know who the common regulators are, only that 
they are likely to exist. Of course, knowing something about the common regulators, e.g., 
the protein families, can be extremely useful 

Simple motifs, analysis 

To set the problem a bit more formally, let S1, . . . , Sn be n promoter sequences of interest. 
For simplicity we assume also that the sequences are of the same length, L, typically 
something like 500 − 1000 bases (yeast). The simplest possible motif we could try to find 
is a wmer, a sequence of length w. In other words, we are looking for a common wmer 
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(exact match) across the promoters S1, . . . , Sn. We’d like to understand first how L, w, 
and n relate to each other if we wish to claim that a common wmer across the promoters 
is significant, unlikely to arise at random. Longer promoters (larger L) would increase 
the chances of finding a random match; increasing w, on the other hand, would make the 
random match less likely, as would having more sequences (larger n) so long as we require 
a match in all (or most of) the promoters. 

Suppose each promoter sequence is sampled independently at random from a background 
distribution of bases, B(x), x ∈ {A, G, T, C}. In other words, all the bases in all the 
promoter sequences are samples from the same distribution B which we take here to be 
uniform B(A) = B(G) = B(T ) = B(C) = 1/4. Now, what is the probability that we find 
a common wmer across n such promoters? Let’s say first that we are looking for a match 
to a fixed wmer xw. The probability (over the random sampling of the promoters) that 
our probe xw matches the first w bases of the first promoter sequence S1 is simply 1/4w; 
this is the same for any w segment of any of the promoters. More formally, P (xw = Si(j : 
j +w−1)) = 1/4w, where Si(j : j +w−1) is the wmer in promoter Si starting at position 
j. Now, using the fact that the probability of at least one event occuring out of many is 
bounded by the sum of probabilities of individual events (union bound), we get 

L−w+1 � �� 1 
P (Si contains xw) ≤ P xw = Si(j : j + w − 1) = (L− w + 1) ·

4w 
i=1 

Since the promoters are sampled independently we can simply multiply the probabilities 
of finding a match in each promoter: � �n w + 1 

P ( all S1, . . . , Sn contain xw) ≤ 
L−

4w 

Finally, since there are 4w possible probes we could search, � �n w + 1 
P ( a common wmer in all S1, . . . , Sn) ≤ 4w L−· 

4w 

This probability should be less than 0.05 in order for us to claim that any match we do 
find in n real promoters is significant. When L = 500 and w = 5, we would need to find an 
exact match in n = 15 promoters. If we are searching over a set of n promoters but find a 
common wmer in only m of them, then the probability of a random match would be 

�n 

P ( a common wmer in m of S1, . . . , Sn) ≤ 
n 

4w L− w + 1 

m 
· · 

4w 



� �� � 

� 
� �� � 

� 

3 6.874/6.807/7.90 Computational functional genomics, lectures 3 and 4 (Jaakkola) 

Hypergeometric distribution 

Another simple way to evaluate a motif is to see if it occurs preferentially in promoters of 
a functionally coherent set of genes (e.g., genes known to participate in the same biological 
process). Let N be the total number of promoters in the genome, and n the number of genes 
whose promoters contain the motif. If our relevant (fixed) set of genes has m members, 
we’d like to evaluate the probability that a completely unrelated motif, motif whose pattern 
of occurence has little to do with the functional category, would nevertheless occur in at 
least k of the m relevant promoters. Put another way, if the set of n promoters that the 
motif occurs in is a random sample from N possible promoters, what is the probability 
that this set would contain at least k members from the relevant set? The probability of 
overlap of exactly k members is given by the hypergeometric distribution: 

m 
k 

N−m 

P ( overlap is exactly k) = 
n−�k � 

N 
n 

and thus 

mmin{n,m} N−m 
l

P ( overlap of at least k ) = 
n−l � 

N 
l=k n 

This probability should again be smaller than 0.05 for us to claim that the association 
between the motif and the relevant genes is significant. Note that if the motif is chosen on 
the basis of the same relevant genes, this probability will no longer be valid as a measure of 
significance. It could nevertheless still be used as a criterion to weed out irrelevant motifs 
(see, e.g., Hughes et al., 2000) 

Motif models, three estimation problems 

Binding sites of each regulator can show considerable variation from site to site highlighting 
the fact that a regulator may be able to bind to different but related sequence elements, 
possibly with different affinities. For example, the following aligned sites are examples of 
putative GAL41 binding sites 

1A DNA binding regulator of the yeast Galactose system. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=10698627&dopt=Abstract
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CGGTCAACAGTTGTCCGAGC 

CGGCGGCTTCTAATCCGTAC 

CGGAGGGCTGTCGCCCGCTC 

*** *** 

where the relevant signature is CGG ... CCG (the length of the gap may also vary slightly 
from site to site). GAL4 binds as a dimer (has two DNA binding domains) and the 
conserved signature of the binding site represents how the two parts make contact with 
DNA. 

We have to be able to somehow capture this variation so as to find other instances of the 
binding site. A possible strategy, and one that we will follow here, is to build a statistical 
model from examples of bindings sites. The advantage of such a model is that we might be 
able to capture the manner in which the sites vary based on relatively few examples. The 
difficulty in general is that the model has to be estimated in conjunction with discovering 
examples of the binding sites! 

The problems we have to solve in this context can be categorized in terms of the available 
data. 

1. We have a set of prealigned binding sites. We need to build a statistical motif model 
that captures the variation in the sites. This is a subproblem we have to solve in 
any case. 

2. We have a set of promoter sequences that are known to contain (at least) one copy 
of the binding site. In this case we have to find where the sites are in conjunction 
with estimating the motif model. 

3. We only have a set of promoter sequences, some subset of which contain at least one 
copy of the binding site. 

Problem 1: Position specific weight matrix 

We begin here with a simple example where the binding site is a contiguous 4mer. The 
aligned binding sites could be, for example, 

TGAC 

TGAC 

CGAG 
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Suppose we assume that the variation of bases in these sites is independent across the 
columns (relative positions). Then we are left with estimating a distribution over the bases 
for each relative position. For example, based on the above 4mers, we would estimate 
P1(A) = 0, P1(G) = 0, P1(T ) = 2/3 and P1(C) = 1/3, where the subindex 1 refers to the 
relative position. Similarly, P3(A) = 1. We can collect these probabilities or frequencies of 
bases in each position into a position specific weight matrix: ⎤⎡⎤⎡ 

P1(A) P2(A) P3(A) P4(A) A 0 0 1 0 

M̂ =

⎢⎢⎢⎣ 

P1(G) P2(G) P3(G) P4(G) 
P1(T ) P2(T ) P3(T ) P4(T ) 

⎥⎥⎥⎦ 
=


G

T


⎢⎢⎢⎣ 
0 1 0 1/3


2/3 0 0 0


⎥⎥⎥⎦ (1) 

P1(C) P2(C) P3(C) P4(C) C 1/3 0 0 2/3 

This is how we try to summarize the variation in the binding sites. The frequencies in the 
above matrix are maximum likelihood estimates of the base frequencies. To understand 
this, consider evaluating the probability, given the weight matrix, of the first 4mer: 

P (TGAC|M) = P1(T ) P2(G) P3(A) P4(C) = 2/3 1 1 2/3 = 4/9· · · · · · 

The likelihood of all three sites is then 

P (TGAC|M) P (TGAC|M) P (CGAC|M)· · 

The numerical values in the M matrix are chosen to maximize this likelihood – probability 
that the model reproduces the data. 

The simple weight matrix model is unable to represent many types of variation. For 
example, we couldn’t capture the conserved parts of the GAL4 binding sites if the gap 
length varies from site to site. Similarly, we couldn’t capture the variation introduced by 
a change in the orientation of an asymmetric but perfectly conserved site: AAAGGG and 
GGGAAA (artificial example). The maximum likelihood estimate of the weight matrix based 
on these two sites would be ⎤⎡ 

A 1/2 1/2 1/2 1/2 

M̂ = 
G
 ⎢⎢⎢⎣ 

1/2 1/2 1/2 1/2

0 0 0 0


⎥⎥⎥⎦T

C 0 0 0 0 

Thus, according to the model, AGAGAG is just as likely as one of the original binding sites. 

Another (related but actually useful) feature of the weight matrix is that it can be very 
sensitive to the correct alignment of the binding sites. For example, 
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cTGAC 

TGACa 

where the lowercase letters indicate bases around the site, introduced here due to an align
ment error and the fact that we consider 5mers. The correct weight matrix would capture 
the perfectly conserved sequence TGAC but the maximum likelihood estimate of the two 
incorrectly aligned sites involves much more uncertainty about the bases: ⎤⎡ 

A 0 0 0 1/2 1/2 

M̂ = 
G
 ⎢⎢⎢⎣ 

0 1/2 1/2 0 0

1/2 1/2 1/2 0 0


⎥⎥⎥⎦T 
C 1/2 0 0 1/2 1/2 

(note that the model in this case is over 5 bases). The increased uncertainty about the 
bases decreases the likelihood of reproducing the data (the probability mass assigned to 
each observed base is lower). So, the better we can align the binding sites, the higher the 
likelihood of the data. 

Problem 2: motif score, search 

Here we dispense with the requirement that we have prealigned binding sites. We assume 
only that the available promoter sequences contain at least one copy of the binding site. 
In other words, we have to find where the binding sites are in addition to estimating the 
position specific weight matrix. 

To get started we need to be able to score (evaluate the likelihood of) whole promoter 
sequences assuming they contain binding sites in specific locations. Let S1, . . . , Sn be the 
promoter sequences with binding sites in locations i1, . . . , in, respectively. This is similar 
to the previous problem since specifying the binding site locations is equivalent to aligning 
them. Once we have a score for promoters with motifs in fixed locations, we can search 
over the possible locations to increase the score (loglikelihood). 

In addition to the motif model, we need a background model, B(x), x ∈ {A, G, T, C}, to 
generate the bases in the promoters around the binding sites. The background frequencies 
of bases are no longer assumed to be uniform; the frequencies may be estimated either on 
the basis of the available promoter sequences or from intergenic regions more generally. 
For our purposes here the background model remains fixed. 

We imagine generating the bases in each promoter sequence S (of length L) as follows. We 
start with the background model and generate the bases until we hit the binding site at 
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position i. At that point we switch to using the position specific base frequencies from the 
matrix, and sample a base for each successive position in the motif. The remaining bases 
in the promoter, after the binding site, are again sampled from the background model. 
The probability that we correctly generate the bases in S, assuming a binding site at i, is 
therefore: 

bases before the site bases within the site bases after the site � �� � � �� � � 
w Li−1

P (S|M, i) = B(S(j)) Pj(S(i + j − 1)) · B(S(j))· 
j=1 j=1 j=i+w 

So, for example, if we use the weight matrix from eq (1), and assume that the promoter 
sequence S = ACGTGACT contains a binding site in position 4, we would evaluate the above 
probability as 

P (S|M, i = 3) = B(A)B(C)B(G) P1(T )P2(G)P3(A)P4(C) B(T )· · 
= B(A)B(C)B(G) 2/3 1 1 2/3 B(T )· · · · · 

It is instructive to compare the probability P (S|M, i) to the probability of generating all the 
bases in the promoter from the background model or P (S|B). To facilitate the comparison 
we can decompose P (S|B) in terms of the binding site location so long as we use the 
background model to generate all the bases. In other words, 

w Li−1

P (S|B) = B(S(j)) B(S(i + j − 1)) B(S(j))· · 
j=1 j=1 j=i+w 

The loglikelihood ratio of the two probabilities is now given by � w �L 
j=1 B(S(j)) j=1 Pj(S(i + j − 1)) j=i+w B(S(j))

log 
P (S|M, i) 

�i−1 

P (S|B) 
= log �i−1 

· � 
· 

w �L 
j=1 B(S(j)) j=1 B(S(i + j − 1)) j=i+w B(S(j)) � 

· · 
w w

= log �j=1 Pj(S(i + j − 1)) � 
log 

Pj(S(i + j − 1)) 
= w 

j=1 B(S(i + j − 1)) B(S(i + j − 1)) j=1 

So the advantage of specifying a binding site at i depends only on the bases within the site. 
Moreover, slightly higher probabilities of generating the successive bases in the binding 
site from the position specific probabilities can add up to a substantial advantage over the 
length of the binding site. 

Now, given promoter sequences S1, . . . , Sn, binding sites in locations i1, . . . , in, and the 
motif model M , the likelihood of reproducing all the bases in the promoter sequences is 
given by 

P (S1|M, i1) P (Sn|M, in)· · · 
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This is the score we’d like to optimize in terms of both the binding site locations i1, . . . , in 

and the motif model M . It is easier but equivalent to optimize the loglikelihood instead: 

n

log P (S1|M, i1) P (Sn|M, in) = log P (St|M, it)· · ·
t=1 

We can perform the optimization iteratively by alternating the steps of finding the best 
locations i1, . . . , in given the current (probably wrong) motif model M and subsequently 
updating the model M based on the new locations (alignment of binding sites) i1, . . . , in. 
More formally: start with some prior weight matrix M and, iteratively 

(1) find the best binding site location for each promoter given M : 

it ← arg max i log P (St|M, i) , for each t = 1, . . . , n 

(2) optimize the weight matrix M (as before) based on the aligned sites at locations 
i1, . . . , in 

We can stop when the binding site locations i1, . . . , in no longer change. Since the back
ground model is assumed fixed, we could replace the first step by 

it ← arg max log 
P (St|M, i) 

, for each t = 1, . . . , n 
i P (St|B) 

So the locations we find in the first step are the ones that the current motif model has 
the greatest advantage over the background model. The second step tries to reinforce this 
advantage by adjusting the motif model. 

While this algorithm successively increases our score – loglikelihood of the bases in the 
promoter sequences – it is quite sensitive to the initial choice of the motif model. Put 
another way, the algorithm can easily get stuck in a bad solution if the initial choice of the 
motif model is not close to the correct one. Ideally we wouldn’t want to commit to any 
specific alignment in step (1) above when we don’t yet know what the appropriate motif 
model is. 

Mixtures and the EM algorithm 

We can improve the motif finding algorithm by rethinking the model a bit. What do we 
know about the binding site locations before running the algorithm? Suppose we have no 
idea where the binding site should be. We can express this ignorance by defining a uniform 
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prior distribution over the L − w + 1 possible locations P (i) = 1/(L − w + 1). So, since 
we are uncertain about the location of the binding site, we could generate the bases in S 
as follows: sample a location from the prior P (i), introduce a binding site at i, and then 
generate the bases from P (S|M, i), defined as before. The overall probability of generating 
the bases in S according to this model is given by 

L−w+1

P (S|M) = P (i)P (S|M, i) 
i=1 

This is called a mixture model since it “mixes” more specific models P (S|M, i). Note that 
P (S|M) is no longer a function of any specific binding site location; we are considering all 
possible locations. The model also depends on the prior probabilities P (i) in addition to the 
motif model M . These prior probabilities can be adjusted on the basis of any information 
we have about where we would expect to find the binding sites (e.g., based on the degree 
of conservation of bases across species). 

Since we are no longer explicitly specifying where the binding sites are, how do we recover 
the binding site locations? We can evaluate the posterior probability of finding the binding 
site in any specific location: 

P (i|M, S) = 
P (S|M, i)P (i) 

(2) 
P (S|M) 

The posterior probability is proportional to the prior probability of finding the binding site 
at location i, or P (i), and the ability of the motif model to generate the bases assuming 
the binding site at i, or P (S|M, i). P (S M) above simply normalizes the posterior so it |
sums to one. 

We can use the posterior probabilities to “align” putative binding sites for the purpose of 
updating the motif matrix M . The alignment is weighted: each w−mer in each promoter 
sequence is included in the alignment but with the weight equal to the posterior probability. 
So, most of the w−mers will have insignificant weights and, so long as the prior probability 
over the binding site locations is uniform, the highest weight (posterior probability) will be 
given to the site also identified by the previous algorithm. 

Suppose we have two promoter sequences S1 = CTGA and S2 = CGAC and we have specified 
an initial 3−mer motif model M . In this case we can put a 3−mer binding site in only two 
possible locations within each promoter sequence. To get the posterior probabilities over 
the possible locations, say within S1, we can start by evaluating 

P (S1|M, i = 1) = P1(C)P2(T )P3(G)B(A) 

P (S1|M, i = 2) = B(C)P1(T )P2(G)P3(A) 



10 6.874/6.807/7.90 Computational functional genomics, lectures 3 and 4 (Jaakkola) 

These, together with the uniform prior P (i) = 1/2, i = 1, 2, determine the probability that 
the mixture assigns to S1 or P (S1|M). The posteriors can be then computed directly from 
the Bayes rule in Eq (2). In terms of the weighted alignment, we will have 

weight 3mer site 
P (i = 1|S1, M) CTG 
P (i = 2|S1, M) TGA 
P (i = 1|S2, M) CGA 
P (i = 2|S2, M) GAC 

The weights sum to 2 (the number of promoter sequences). This weighted alignment 
replaces the step (1) of our previous algorithm, and is known as the Estep of the EM 
(Expectation Maximization) algorithm. The Mstep or finding the motif model in response 
to the alignment is analogous to the step (2) of our previous algorithm: we evaluate weighted 
frequencies of bases in each column. So, for example, if we rewrite the above table more 
concretely as 

weight 3mer 
P (i = 1|S1, M) = 0.1 CTG 
P (i = 2|S1, M) = 0.9 TGA 
P (i = 1|S2, M) = 0.6 CGA 
P (i = 2|S2, M) = 0.2 GAC 

then we would estimate the first column of the new motif model M as 

1 
P1(A) = 0 

2 
· 

1 
P1(G) = 0.2 = 0.1 

2 
· 

1 
P1(T ) = 0.9 = 0.45 

2 
· 

1 
P1(C) = · (0.1 + 0.6) = 0.35 

2 

In summary, the EMalgorithm for training a mixture motif model can be defined as follows: 
start from an initial choice of M , 

Estep: for each promoter sequence S1, . . . , Sn, evaluate the posterior locations of the 
binding site: 

P (i|St, M), i = 1, . . . , L− w + 1, t = 1, . . . , n 
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Mstep: reestimate the motif model M on the basis of the weighted alignment defined 
by the posteriors 

The EMalgorithm is guaranteed to monotonically increase the (log)likelihood of the pro
moter sequences according to the mixture model: 

n

log P (St|M) 
t=1 

The solution is still iterative (we repeat the E and Msteps until convergence), we are 
not guaranteed to find the optimal solution, but the algorithm is nevertheless much less 
susceptible to getting stuck in a bad solution than the simpler version discussed above. 

Problem 3: extensions 

We can extend the basic mixture idea in various ways to incorporate structure into the 
motifs (e.g., gaps) or remove the assumption that we need to find a binding site in each 
promoter sequence. For example, suppose we expect roughly a fraction p of the relevant 
promoters to have the binding site of interest. A mixture model consistent with this 
assumption would be: 

P (S M, p) = pP (S M) + (1 − p)P (S B)| | |

In other words, with probability p we generate the bases in S using the mixture model 
discussed above that assumes a motif, and with probability 1 − p we simply generate all 
the bases from the background model. This mixture can be estimated using a modified 
EMalgorithm. If you don’t know the parameter p, it can be estimated along with the 
motif model M . 
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