
RecitaLon 3-­‐19

CB Lecture #10
RNA	
 Secondary Structure

1

 

 

 
 
 

 

Announcements
•	 Exam 1 grades and answer key will be posted
Friday a=ernoon
– We will try to make exams available for pickup
Friday a=ernoon (probably from 3:30-­‐4pm and
5-­‐5:30pm, before and a=er the Friday secLon)

•	 Pset #3 has been released, due April 3rd
–	 much longer programming problem than Pset #2
– Because of spring break, only one set of formal
office hours before due date, but please email us
with your quesLons

•	 Updated aims with research strategy will be
due Friday April 4th

2

 

RNA	
 Secondary Structure

mRNA	

•	 Just as protein can form secondary structure (α-­‐helix and β-­‐
sheet), so too can single-­‐stranded RNA	
 by folding back on
itself to form double-­‐stranded regions

rRNA	

http://ocw.mit.edu/help/faq-fair-use/.

tRNA	

hNp://www.uic.edu/classes/phys/phys461/phys450/ANJUM04/RNA_sstrand.jpg
hNps://www.mun.ca/biology/scarr/rRNA_folding.html	
 …and virtually every other RNA!	

hNps://wikispaces.psu.edu/download/aNachments/54886630/figure_17_12.jpg
3

© Dept. Biol. Penn State. All rights reserved. This
content excluded from our Creative Commons
license. For more information, see http://ocw.mit.
edu/help/faq-fair-use/.

© unknown. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.
Source: http://www.mun.ca/biology/scarr/rRNA_folding.html

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

http://www.uic.edu/classes/phys/phys461/phys450/ANJUM04/RNA_sstrand.jpg
https://www.mun.ca/biology/scarr/rRNA_folding.html
https://wikispaces.psu.edu/download/attachments/54886630/figure_17_12.jpg
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://www.mun.ca/biology/scarr/rRNA_folding.html
http://ocw.mit.edu/help/faq-fair-use/
https://wikispaces.psu.edu/download/attachments/54886630/figure_17_12.jpg
http://ocw.mit.edu/help/faq-fair-use/

 

 
 

 

RNA	
 Secondary Structure
•	 RNA’s	
 secondary structure is o=en inLmately Led with its

funcLon
–	 rRNA	
 and tRNA always adopt the same structure; funcLon depends on it
–	 mRNA	
 may adopt different structures in different condiLons – due to cell

types, temperature,
•	 mRNA’s	
 processing may

depend on what structure is
(or is not) present

-­‐ Can inhibit or strengthen ability of
RNA	
 binding protein to bind mRNA	

and affect alternaLve splicing

-­‐ Can inhibit the ribosome’s	
 ability to
translate through the mRNA	
 due to
sequestraLon of ribosome binding
site or hiOng structured road block

Riboswitches are metabolite-­‐sensing RNAs,
typically located in the non-­‐coding porLons
of messenger RNAs, that control the

Schematic diagram of an E. coli cell removed due
to copyright restrictions. See the image here.

synthesis of metabolite-­‐related proteins
hNp://www-­‐abell.ch.cam.ac.uk/images/riboswitchfig1.jpg

ion concentraLon, etc.

4

http://www-abell.ch.cam.ac.uk/images/riboswitchfig1.jpg
http://www-abell.ch.cam.ac.uk/images/riboswitchfig1.jpg

RNA	
 is at the catalyLc site of the
ribosome (which is a ribozyme)

RNA/protein distribution on the 50S ribosome

fettucini = RNA
linguini = protein

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Ban, Nenad, Poul Nissen, et al. "The Complete Atomic Structure of the Large Ribosomal

Subunit at 2.4 Å Resolution." Science 289, no. 5481 (2000): 905-20.

-­‐Ribozymes – RNAs	
 capable of catalyzing biochemical reacLons -­‐ provide support for “RNA	

world” hypothesis – that life evolved from a world with RNAs	
 but no DNA	
 or protein5

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.289.5481.905
http://dx.doi.org/10.1126/science.289.5481.905

Peter Clote

July 2007

Ding and Lawrence, A statistical sampling algorithm for {RNA} secondary structure

prediction, Nucleic Acids Res., 31(24):7280--7301 (2003)

Terminology

© Oxford University Press. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
© Kenyon College Biology Department. All rights reserved. ThisSource: Ding, Ye, and Charles E. Lawrence. "A Statistical Sampling Algorithm for RNA
content is excluded from our Creative Commons license. For
more

Secondary Structure Prediction." Nucleic Acids Research 31, no. 24 (2003): 7280-301.
information, see http://ocw.mit.edu/help/faq-fair-use/.

hNp://www.ims.nus.edu.sg/Programs/biomolecular07/files/ hNp://biology.kenyon.edu/courses/biol114/KH_lecture_images/
clote_tut2b.pdf transcripLon/FG03_15b.JPG

6

http://www.ims.nus.edu.sg/Programs/biomolecular07/files/clote_tut2b.pdf
http://www.ims.nus.edu.sg/Programs/biomolecular07/files/clote_tut2b.pdf
http://biology.kenyon.edu/courses/biol114/KH_lecture_images/transcription/FG03_15b.JPG
http://biology.kenyon.edu/courses/biol114/KH_lecture_images/transcription/FG03_15b.JPG
http://ocw.mit.edu/help/faq-fair-use/
http://biology.kenyon.edu/courses/biol114/KH_lecture_images/transcription/FG03_15b.JPG
http://ocw.mit.edu/help/faq-fair-use/

Peter Clote

July 2007

Type H pseudoknot, taken from Dirks, Pierce, “A partition function

algorithm for nucleic acid secondary structure including pseudoknots

J Comput Chem, 24(13):1664-1677, 2003

Arc NotaLon	

© source unknown. All rights reserved. This content is excluded from our Creaative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

hNp://www.ims.nus.edu.sg/Programs/biomolecular07/files/clote_tut2b.pdf	
 7

http://ocw.mit.edu/help/faq-fair-use/
http://www.ims.nus.edu.sg/Programs/biomolecular07/files/clote_tut2b.pdf

 

 

 

 

non-­‐coding RNAs	
 (ncRNAs)	

• Any RNA	
 molecule that doesn’t	
 code for protein (any non-­‐mRNA	

molecule)	

– tRNAs,	
 rRNAs,	
 miRNAs,	
 snRNAs,	
 snoRNAs, ribozymes (RNase P), lnRNAs,	

riboswitches

• Due to the central role of structure in facilitaLng RNA’s	
 funcLon,
we’d	
 like the determine structure
– 2 different approaches for secondary structure

1. CovariaLon and compensatory changes through evoluLon
2. Energy minimizaLon

8

RNA 2o structure by covariation /
compensatory changes

 

 

CovariaLon and compensatory changes

•	 Idea: If structure is contribuLng to funcLon but actual sequence
is not, we should see structure conserved but not necessarily
sequence
–	 So evoluLon allows mutaLons as long as secondary structure is

maintained

Seq1: A C G A A A G U
Seq2: U A G U A A U A
Seq3: A G G U G A C U
Seq4: C G G C A A U G
Seq5: G U G G G A A C

9

 

 

CovariaLon and compensatory changes

•	 Need	
 sufficient divergence so that a decent number of
mutaLons and compensatory mutaLons have occurred, but not
so much that sequences can’t	
 be aligned

•	 Need	
 a large number of homologs sequenced to have power to
detect compensatory mutaLons

10

 

 
 

 

 

 

 

 

Mutual InformaLon (MI)
•	 The most common way of quanLfying sequence covariaLon for

the purpose of RNA	
 secondary structure determinaLon
•	 A measure of two variables' mutual dependence

–	 Measures the informaLon that X and Y share: it measures how
much knowing one of these variables reduces uncertainty about the
other

–	 If X and Y are independent, then knowing X does not give an
informaLon about Y and vice versa, so their MI = 0

–	 At the other extreme, if X is a determinisLc funcLon of Y and Y is	
 a
determinisLc funcLon of X, then all informaLon conveyed by X is
shared with Y: knowing	
 X determines the value of Y and vice versa
•	 As a result, in this case the mutual informaLon is the same as the
uncertainty contained in Y (or X) alone, namely the entropy of Y (= entrop
of X)

–	 Mutual informaLon between aligned columns of nucleoLdes that
are base-­‐paired should be high
•	 Knowing	
 one of the nucleoLdes tells you everything about the other (if A,
other is U; if C, other is G, etc.)11

y	

y	

Mutual InformaLon (MI)
MI between two columns i and j:

f (i,j)
x,y : fracLon of sequences with x in column i AND y in column j

f (i) : fracLon of sequences with x in column i

-­‐RelaLve entropy of the joint distribuLon relaLve to the individual distribuLons
of the nucleoLdes in columns i and j
-­‐MI is maximal (2 bits) if x and y appear at random (all 4 nts equally likely) but
perfectly covary (e.g. always complementary)

x

12

Mutual InformaLon (MI)
MI is maximal (2 bits) if x and y appear at random (all 4 nts equally
likely) but perfectly covary (e.g. always complementary)

f (i,j)
What is

x,y Because x and y perfectly covary,	

1

f

(i,j)
x,y = for the 25% of covarying events (e.g. (x,y) = (A,U))

4
f

(i,j)
x,y = 0 for the 75% of non-existent events (e.g. (x,y) = (A,A))

1 1 1
f (i)f (j) ⇤ =What is
x y 4 4 16

13

?

?	

Mutual InformaLon (MI)
MI is maximal (2 bits) if x and y appear at random (all 4 nts equally
likely) but perfectly covary (e.g. always complementary)

1
✓

1/4
◆

=
X

log2
4 1/16

(x,y)=(A,U),(C,G),(G,C),(U,A)

=
X 1 ⇤ 2

4
(x,y)=(A,U),(C,G),(G,C),(U,A)

= 2 bits 14

2

Enthalpy favors folding

Entropy favors unfolding

ΔG = ΔH - TΔS

What environmental variables affect RNA folding?

nd	
 approach:	
 Energy	

 

 

 

Energy Minimization Approach

ΔGfolding = Gunfolded - Gfolded

-­‐ Assume that RNA	
 will fold to its lowest energy state

There are typically many possible folded states-­‐ Simplest model: all base pairs contribute equally to lowering structure’s	
 energy

- assumption that minimum energy state(s) will be occupied -­‐ Base Pair MaximizaLon (ignores energy contribuLons of base stacking,
loops, entropy, etc.): +1 for paired bases, 0 for unpaired

-­‐ Use the Nussinov algorithm of recursive maximizaLon of base pairing

15

nd	
 approach:	
 Energy	
 minimiza'on	

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

2. i unpaired 3. j unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
Na

tu
re

Pu
bl

is
hi

ng
G

ro
up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 3. j unpaired 4. Bifurcation

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
Na

tu
re

Pu
bl

is
hi

ng
G

ro
up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 3. j unpaired

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

 

 

 

See the Eddy Nature	
 Biotechnology Primer 2004

Nussinov algorithm
•	 Look at one conLguous sub-­‐sequence from posiLon i to posiLon j in our

complete sequence of length N, and calculate the score of the best structure
for just that sub-­‐sequence

•	 This opLmal score (call it S(i,j)) can be defined recursively in terms of opLmal
scores of smaller sub-­‐sequences

•	 Four possible ways that a structure of nested base pairs on i...j can be
constructed
1. i, j are a base pair, added on to a structure for i+1 ... j–1
2. i is unpaired, added on to a structure for i+1 ... j
3. j is unpaired, added on to a structure for i ... j–1
4. i, j are paired, but not to each other; the structure for i...j adds together sub-­‐structures
for two sub-­‐sequences, i ... k and k+1 ... j (a bifurcaLon)

1. i,j pair

i j
j – 1 i + 1

S(i + 1,j – 1)

2. i unpaired

i ji + 1

S(i + 1,j)

3. j unpaired

i jj – 1

S(i,j – 1)

4. Bifurcation

i jk k + 1

S(i,k) S(k + 1,j)

16

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

2. i unpaired 3. j unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
Na

tu
re

Pu
bl

is
hi

ng
G

ro
up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i,j) = max S(i + 1,j)
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i + 1,j – 1) +1 [if i,j base pair]
S(i + 1,j)
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

 

 

 

Nussinov algorithm
1. i,j are a base pair, added on to a structure for i+1 ... j–1
–	 The score we add for the base pair i,j is independent of any details of the

opLmal structure on i + 1...j – 1
–	 Similarly, the opLmal structure on i + 1...j – 1 and its score S(i + 1, j – 1) are

unaffected by whether i, j are base paired or not (or anything else that
happens in the rest of the sequence)

–	 Therefore, S(i, j) is just S(i + 1, j – 1) plus one, if i, j can base pair.

S(i,j) = max S(i + 1,j – 1) +1 [if i,j base pair]

–1

1. i,j	 pair

i j
ji + 1

S(i + 1,j – 1)

17

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 3. j unpaired 4. Bifurcation

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
Na

tu
re

Pu
bl

is
hi

ng
G

ro
up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i + 1,j – 1) +1 [if i,j base pair]

S(i,j) = max
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i + 1,j – 1) +1 [if i,j base pair]
S(i + 1,j)
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i + 1,j – 1) +1 [if i,j base pair]
S(i + 1,j)
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i + 1,j – 1) +1 [if i,j base pair]

S(i,j) = max S(i + 1,j)

maxi<k<j S(i,k) + S(k + 1,j)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

 

 

Nussinov algorithm
2. i is unpaired, added on to a structure for i+1 ... j

•	 In case 2, the opLmal score S(i + 1,j) is independent of the addiLon of an
unpaired base i, so S(i + 1, j) + 0 is the score of the opLmal structure on i,j
condiLonal on i being unpaired

3. j is unpaired, added on to a structure for i ... j–1
•	 Case 3 is the same thing, but condiLonal on j being unpaired

S(i,j) = maxS(i + 1,j) S(i,j) = maxS(i,j – 1)

2. i unpaired

i ji + 1

S(i + 1,j)

3. j unpaired

i jj – 1

S(i,j – 1)

18

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 3. j unpaired

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i + 1,j – 1) +1 [if i,j base pair]
S(i + 1,j)
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i + 1,j – 1) +1 [if i,j base pair]

S(i,j) = max S(i + 1,j)
S(i,j – 1)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

 

 

Nussinov algorithm
4. i,j are paired, but not to each other; the structure for i...j adds together
sub-­‐structures for two sub-­‐sequences, i ... k and k+1 ... j (a bifurcaLon)
-­‐ We deal with puOng two independent sub-­‐structures together,

opLmal score S(i,k) is independent of anything going on in k+1 ..
vice versa

the
. j, and

-­‐ Must consider all possible k’s	
 between i and j

k + 1 j

S(k + 1,j)S(i,k)

S(i,j) = maxmaxi<k<j S(i,k) + S(k + 1,j)

i k

4. Bifurcation 19

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

2. i unpaired 3. j unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
Na

tu
re

Pu
bl

is
hi

ng
G

ro
up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 3. j unpaired 4. Bifurcation

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
Na

tu
re

Pu
bl

is
hi

ng
G

ro
up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 3. j unpaired

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

 

 

Nussinov algorithm
•	 Since these are the only four possible cases, the opLmal score

S(i, j) is just the maximum of the four possibiliLes
• We’ve	
 thus defined the opLmal score S(i,j) recursively as a

funcLon only of opLmal scores of smaller sub-­‐sequences, so
we only need to remember these scores, not the
combinatorial explosion of

i j – 1

S(i,j – 1)

possible structures
S(i + 1,j – 1) +1 [if i,j base pair]
S(i + 1,j)S(i,j) = max
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

S(i + 1,j – 1)

i + 1 j

S(i + 1,j)	

k + 1 j

S(k + 1,j)S(i,k)

i + 1 j – 1
j i ki j i

1. i,j pair 2. i unpaired 3. j unpaired 4. Bifurcation 20

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 3. j unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b ithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 3. j unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 3. j unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

b Dynamic programming algorithm f

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

GG C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 3. j unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i j
j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

Initialization;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

recursive fill;

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
1

0

0
0

0
1

1
1

0
0

1
1

1

0
1

2
1

1
2

2

2
3
3

G G G A A A U C C
G
G
G
A
A
A
U
C
C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
Na

tu
re

Pu
bl

is
hi

ng
G

ro
up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

Nussinov algorithm

21

 

 

 

Nussinov algorithm
•	 Storing the S(i, j matrix requires memory proporLonal to

N2, similar to what sequence alignment algorithms need

•	 However, the innermost loop of having to find opLmal
potenLal bifurcaLon points kmeans that the folding
algorithm requires Lme proporLonal to N3, a factor of Nmore	

Lme-­‐intensive than sequence alignment
–	 RNA	
 folding calculaLons o=en require a large amount of computer

power

22

)

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

 

Nussinov Algorithm Example
We want to fold the following RNA	
 sequence:

AAGUUCG

(1) Write the sequence along the top and le= side of the matrix

(2) IniLalize the diagonal of the matrix and one-­‐below to zero

(3) Fill in i,	
 jth entries according to

S(i + 1,j – 1) +1 [if i,j base pair]
S(i + 1,j)S(i,j) = max
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

23

Nussinov Algorithm -­‐ iniLalizaLon

24

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

Nussinov Algorithm

25

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

Nussinov	
 Algorithm

26

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
N

at
ur

e
Pu

bl
is

hi
ng

G
ro

up
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

Nussinov Algorithm

27

Nussinov	
 Algorithm	

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
 N

at
ur

e
Pu

bl
is

hi
ng

 G
ro

up
 h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

28

Nussinov	
 Algorithm	

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
 N

at
ur

e
Pu

bl
is

hi
ng

 G
ro

up
 h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

29

Nussinov	
 Algorithm	

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
 N

at
ur

e
Pu

bl
is

hi
ng

 G
ro

up
 h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

30

Nussinov	
 Algorithm	

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
 N

at
ur

e
Pu

bl
is

hi
ng

 G
ro

up
 h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

31

Nussinov	
 Algorithm	

A	
 A	
 G	
 U	
 U	
 C	
 G	

A	
 0	
 0	
 0	
 1	
 2	
 2	

A	
 0	
 0	
 0	
 1	
 1	
 1	
 1	

G	
 0	
 0	
 0	
 0	
 1	
 1	

U	
 0	
 0	
 0	
 0	
 1	

U	
 0	
 0	
 0	
 1	

C	
 0	
 0	
 1	

G	
 0	
 0	

i	

	

j	

	

P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i + 1,j – 1) +1 [if i,j base pair]

S(i,j) = max S(i + 1,j)
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
 N

at
ur

e
Pu

bl
is

hi
ng

 G
ro

up
 h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

A-­‐G	
 don’t	
 base	
 pair	

=	
 1	

=	
 2	

(i	
 =	
 1,j	
 =	
 7)	

Fill	
 in	

highlighted	

square:	

k	
 =	
 3:	
 	
 S(1,3)	
 +	
 S(4,7)	
 =	
 0+1	
 =	
 1	

k	
 =	
 4:	
 	
 S(1,4)	
 +	
 S(5,7)	
 =	
 1+1	
 =	
 2	

k	
 =	
 2:	
 	
 S(1,2)	
 +	
 S(3,7)	
 =	
 0+1	
 =	
 1	

k	
 =	
 5:	
 	
 S(1,5)	
 +	

S(6,7)	
 =	
 2+1	
 =	
 3	

k	
 =	
 6:	
 	
 S(1,6)	
 +	

S(7,7)	
 =	
 2+0	
 =	
 2	

3	

Nussinov	
 Algorithm	
 -­‐traceback	

A	
 A	
 G	
 U	
 U	
 C	
 G	

A	
 0	
 0	
 0	
 1	
 2	
 2	
 3	

A	
 0	
 0	
 0	
 1	
 1	
 1	
 1	

G	
 0	
 0	
 0	
 0	
 1	
 1	

U	
 0	
 0	
 0	
 0	
 1	

U	
 0	
 0	
 0	
 1	

C	
 0	
 0	
 1	

G	
 0	
 0	

i	

	

j	

	

start	
 here	

Can	
 you	
 draw	
 this	
 folded	
 RNA?	

k	
 =	
 5:	
 	
 S(1,5)	
 +	
 S(6,7)	
 =	
 2+1	
 =	
 3	

Op'mal	
 sub-­‐structure	
 from	
 1-­‐5	
 (with	
 2	
 matches)	
 	
 Op'mal	
 sub-­‐structure	
 from	
 6-­‐7	
 (with	
 1	
 match)	
 	

Nussinov	
 Algorithm	
 -­‐traceback	

Can	
 you	
 draw	
 this	
 folded	
 RNA?	

C	
 G
A	

A	

U
U

G	
 -­‐	
 note	
 that	
 in	
 reality,	
 stems	
 can’t	

form	
 if	
 the	
 loop	
 is	
 less	
 than	
 3bp	

due	
 to	
 restric'ons	
 on	
 backbone	

angles	

A	
 A	
 G	
 U	
 U	
 C	
 G	

A	
 0	
 0	
 0	
 1	
 2	
 2	
 3	

A	
 0	
 0	
 0	
 1	
 1	
 1	
 1	

G	
 0	
 0	
 0	
 0	
 1	
 1	

U	
 0	
 0	
 0	
 0	
 1	

U	
 0	
 0	
 0	
 1	

C	
 0	
 0	
 1	

G	
 0	
 0	

i	

	

j	

	

start	
 here	

Improvements	
 on	
 Nussinov	
 algorithm	

•  Nussinov	
 is	
 the	
 “core”	
 of	
 most	
 RNA	
 folding	
 programs,	
 but	

they	
 all	
 have	
 bells	
 &	
 whistles	

–  Take	
 into	
 account	
 that	
 loop	
 must	
 be	
 3	
 or	
 more	
 nucleo'des	

–  Not	
 all	
 base	
 pairs	
 are	
 equal	
 in	
 reality	
 (we	
 treated	
 them	
 all	
 at	
 +1	
 in	
 Nussinov)	

–  Base	
 stacking	
 interac'ons	

RNA Energetics I

• base pairing:

G A G
 > >

C U U

• base stacking:

G p A
| |
C p U

Base stacking contributes more
to free energy than base pairing

3’…CCAUUCAUAG…5’
 ||||||
5’…CGUGAGU…3’

© source unknown. All rights reserved. This content is excluded from our Creaative
Commons license. For more 35 information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

Improvements	
 on	
 Nussinov	
 algorithm	

•  Nussinov	
 is	
 the	
 “core”	
 of	
 most	
 RNA	
 folding	
 programs,	
 but	

they	
 all	
 have	
 bells	
 &	
 whistles	

–  Take	
 into	
 account	
 that	
 loop	
 must	
 be	
 3	
 or	
 more	
 nucleo'des	

–  Not	
 all	
 base	
 pairs	
 are	
 equal	
 in	
 reality	
 (we	
 treated	
 them	
 all	
 at	
 +1	
 in	
 Nussinov)	

–  Base	
 stacking	
 interac'ons	

–  Penalizes	
 interior	
 bulges	

–  Extra	
 terms	
 at	
 terminal	
 ends	
 of	
 RNA	
 exposed	
 to	
 solvent	

–  -­‐Nussinov	
 algorithm	
 cannot	
 detect	
 pseudoknots,	
 since	
 these	
 do	
 not	
 sa'sfy	
 the	
 recursive	

assump'on	
 that	
 each	
 structure	
 can	
 be	
 split	
 into	
 smaller	
 self-­‐contained	
 sub-­‐structures	
 	
 -­‐	

more	
 advanced	
 algorithms	

–  With	
 all	
 these	
 addi'ons,	
 mfold	
 gets	
 ~70%	
 of	
 bases	
 correctly	
 folded;	
 preYy	
 good	
 on	

average	
 but	
 would	
 likely	
 want	
 to	
 do	
 in	
 vivo	
 structure	
 profiling	
 of	
 your	
 RNA	
 if	
 you	
 really	

want	
 to	
 know	
 its	
 structure	

36

Happy	
 Spring	
 Break!	

37

MIT OpenCourseWare
http://ocw.mit.edu

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

