Recitation 3-19

CB Lecture #10 RNA Secondary Structure

Announcements

- Exam 1 grades and answer key will be posted Friday afternoon
 - We will try to make exams available for pickup
 Friday afternoon (probably from 3:30-4pm and
 5-5:30pm, before and after the Friday section)
- Pset #3 has been released, due April 3rd
 - much longer programming problem than Pset #2
 - Because of spring break, only one set of formal office hours before due date, but please email us with your questions
- Updated aims with research strategy will be due Friday April 4th

RNA Secondary Structure

 Just as protein can form secondary structure (α-helix and βsheet), so too can single-stranded RNA by folding back on itself to form double-stranded regions

© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: http://www.mun.ca/biology/scarr/rRNA_folding.html

© Dept. Biol. Penn State. All rights reserved. This content excluded from our Creative Commons license. For more information, see http://ocw.mit. edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://www.uic.edu/classes/phys/phys461/phys450/ANJUM04/RNA_sstrand.jpg https://www.mun.ca/biology/scarr/rRNA_folding.html

https://wikispaces.psu.edu/download/attachments/54886630/figure_17_12.jpg

...and virtually every other RNA!

RNA Secondary Structure

- RNA's secondary structure is often intimately tied with its function
 - rRNA and tRNA always adopt the same structure; function depends on it
 - mRNA may adopt different structures in different conditions due to cell types, temperature, ion concentration, etc.
 - mRNA's processing may depend on what structure is (or is not) present

- Can inhibit or strengthen ability of RNA binding protein to bind mRNA and affect alternative splicing

- Can inhibit the ribosome's ability to translate through the mRNA due to sequestration of ribosome binding site or hitting structured road block

Riboswitches are metabolite-sensing RNAs, typically located in the non-coding portions of messenger RNAs, that control the synthesis of metabolite-related proteins Schematic diagram of an *E. coli* cell removed due to copyright restrictions. See the image here.

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Ban, Nenad, Poul Nissen, et al. "The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 Å Resolution." *Science* 289, no. 5481 (2000): 905-20.

-Ribozymes – RNAs capable of catalyzing biochemical reactions - provide support for "RNA world" hypothesis – that life evolved from a world with RNAs but no DNA or protein

5

Terminology

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Ding, Ye, and Charles E. Lawrence. "A Statistical Sampling Algorithm for RNA Secondary Structure Prediction." *Nucleic Acids Research* 31, no. 24 (2003): 7280-301.

6
http://www.ims.nus.edu.sg/Programs/biomolecular07/files/
clote_tut2b.pdf

© Kenyon College Biology Department. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://biology.kenyon.edu/courses/biol114/KH_lecture_images/ transcription/FG03_15b.JPG

Arc Notation

© source unknown. All rights reserved. This content is excluded from our Creaative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://www.ims.nus.edu.sg/Programs/biomolecular07/files/clote_tut2b.pdf

non-coding RNAs (ncRNAs)

- Any RNA molecule that doesn't code for protein (any non-mRNA molecule)
 - tRNAs, rRNAs, miRNAs, snRNAs, snoRNAs, ribozymes (RNase P), InRNAs, riboswitches
- Due to the central role of structure in facilitating RNA's function, we'd like the determine structure
 - 2 different approaches for secondary structure
 - 1. Covariation and compensatory changes through evolution
 - 2. Energy minimization

Covariation and compensatory changes

- Idea: If structure is contributing to function but actual sequence is not, we should see structure conserved but not necessarily sequence
 - So evolution allows mutations as long as secondary structure is maintained

Covariation and compensatory changes

- Need sufficient divergence so that a decent number of mutations and compensatory mutations have occurred, but not so much that sequences can't be aligned
- Need a large number of homologs sequenced to have power to detect compensatory mutations

- The most common way of quantifying sequence covariation for the purpose of RNA secondary structure determination
- A measure of two variables' mutual dependence
 - Measures the information that X and Y share: it measures how much knowing one of these variables reduces uncertainty about the other
 - If X and Y are independent, then knowing X does not give any information about Y and vice versa, so their MI = 0
 - At the other extreme, if X is a deterministic function of Y and Y is a deterministic function of X, then all information conveyed by X is shared with Y: knowing X determines the value of Y and vice versa
 - As a result, in this case the mutual information is the same as the uncertainty contained in Y (or X) alone, namely the entropy of Y (= entropy of X)
 - Mutual information between aligned columns of nucleotides that are base-paired should be high
 - Knowing one of the nucleotides tells you everything about the other (if A, other is U; if C, other is G, etc.)

MI between two columns *i* and *j*:

12

$$M_{ij} = \sum_{x=A,C,G,U} \sum_{y=A,C,G,U} f_{x,y}^{(i,j)} \log_2\left(\frac{f_{x,y}^{(i,j)}}{f_x^{(i)} f_y^{(j)}}\right)$$

 $f_{x,y}^{(i,j)}$: fraction of sequences with x in column i AND y in column j

$$f_x^{(i)}$$
 : fraction of sequences with x in column i

-Relative entropy of the joint distribution relative to the individual distributions of the nucleotides in columns *i* and *j*

-MI is maximal (2 bits) if x and y appear at random (all 4 nts equally likely) but perfectly covary (e.g. always complementary)

MI is maximal (2 bits) if x and y appear at random (all 4 nts equally likely) but perfectly covary (e.g. always complementary)

a(i,i)

1

1

$$\begin{split} M_{ij} &= \sum_{x=A,C,G,U} \sum_{y=A,C,G,U} f_{x,y}^{(i,j)} \log_2 \left(\frac{f_{x,y}^{(i,j)}}{f_x^{(i)} f_y^{(j)}} \right) \\ \text{What is } f_{x,y}^{(i,j)} ? \quad \text{Because } x \text{ and } y \text{ perfectly covary,} \\ f_{x,y}^{(i,j)} &= \frac{1}{4} \text{ for the } 25\% \text{ of covarying events (e.g. } (x,y) = (A,U)) \\ f_{x,y}^{(i,j)} &= 0 \text{ for the } 75\% \text{ of non-existent events (e.g. } (x,y) = (A,A) \\ \text{What is } f_x^{(i)} f_y^{(j)} ? \qquad \frac{1}{4} * \frac{1}{4} = \frac{1}{16} \end{split}$$

MI is maximal (2 bits) if x and y appear at random (all 4 nts equally likely) but perfectly covary (e.g. always complementary)

2^{nd} approach: Energy minimization $\Delta G_{folding} = G_{unfolded} - G_{folded}$

- Assume that RNA will fold to its lowest energy state
- Simplest model: all base pairs contribute equally to lowering structure's energy
 - Base Pair Maximization (ignores energy contributions of base stacking, loops, entropy, etc.): +1 for paired bases, 0 for unpaired
 - Use the Nussinov algorithm of recursive maximization of base pairing

1. *i*,*j* pair

Nussinov algorithm

- Look at one contiguous sub-sequence from position *i* to position *j* in our complete sequence of length *N*, and calculate the score of the best structure for just that sub-sequence
- This optimal score (call it *S*(*i*,*j*)) can be defined recursively in terms of optimal scores of smaller sub-sequences
- Four possible ways that a structure of nested base pairs on *i...j* can be constructed
 - 1. *i*, *j* are a base pair, added on to a structure for $i+1 \dots j-1$
 - 2. *i* is unpaired, added on to a structure for *i*+1 ... *j*
 - 3. *j* is unpaired, added on to a structure for *i* ... *j*–1

4. *i*, *j* are paired, but not to each other; the structure for *i*...*j* adds together sub-structures for two sub-sequences, *i*... *k* and k+1...*j* (a bifurcation)

2. *i* unpaired

3. *j* unpaired

4. Bifurcation

1. *i*,*j* are a base pair, added on to a structure for *i*+1 ... *j*-1

- The score we add for the base pair *i*, *j* is independent of any details of the optimal structure on i + 1...j 1
- Similarly, the optimal structure on *i* + 1...*j* 1 and its score S(*i* + 1, *j* 1) are unaffected by whether *i*, *j* are base paired or not (or anything else that happens in the rest of the sequence)
- Therefore, S(i, j) is just S(i + 1, j 1) plus one, if *i*, *j* can base pair.

$$S(i+1,j-1) = S(i+1,j-1) + 1 \quad [\text{if } i,j \text{ base pair}]$$

1. *i,j* pair

2. *i* is unpaired, added on to a structure for *i*+1 ... *j*

In case 2, the optimal score S(i + 1,j) is independent of the addition of an unpaired base i, so S(i + 1, j) + 0 is the score of the optimal structure on i,j conditional on i being unpaired

3. *j* is unpaired, added on to a structure for *i* ... *j*–1

• Case 3 is the same thing, but conditional on *j* being unpaired

$$S(i,j) = S(i+1,j)$$

$$S(i,j) = S(i+1,j)$$

$$S(i,j) = S(i+1,j)$$

$$S(i,j) = S(i,j-1)$$

$$S(i,j) = S(i,j-1)$$

$$S(i,j) = S(i,j-1)$$

3. j unpaired

4. *i*, *j* are paired, but not to each other; the structure for *i*...*j* adds together sub-structures for two sub-sequences, *i* ... *k* and *k*+1 ... *j* (a bifurcation)

- We deal with putting two independent sub-structures together, the optimal score S(i,k) is independent of anything going on in k+1 ... j, and vice versa
- Must consider all possible k's between i and j

$$S(i,j) = \max_{i < k < j} S(i,k) + S(k+1,j)$$

$$S(i,k)$$

$$S(k+1,j)$$

4. Bifurcation

- Since these are the only four possible cases, the optimal score *S*(*i*, *j*) is just the maximum of the four possibilities
- We've thus defined the optimal score S(i,j) recursively as a function only of optimal scores of smaller sub-sequences, so we only need to remember these scores, not the combinatorial explosion of possible structures

- To run this recursion efficiently, we need to make sure that whenever we try to compute an S(i,j), we already have calculated the scores for smaller subsequences.
 - This sets up a dynamic programming algorithm.
- We tabulate the scores S(i, j) in a triangular matrix. We initialize on the diagonal; subsequences of length 0 or 1 have no base pairs, so S(i,i) = S(i, i - 1) = 0 (by convention, the i, i - 1 cells represent zero length sequences; the recursion must never access an empty matrix cell).
- Work outwards on larger and larger sub-sequences, until we reach the upper right corner.
 - This corner is S(1, N), the score of the optimal structure for the complete sequence from i=1 to j=N.
 - From that point, recover the optimal structure by tracing back the optimal path that got us
 into the upper corner, one step in the structure at a time.

- Storing the *S*(*i*, *j*) matrix requires memory proportional to *N*², similar to what sequence alignment algorithms need
- However, the innermost loop of having to find optimal potential bifurcation points k means that the folding algorithm requires time proportional to N³, a factor of N more time-intensive than sequence alignment
 - RNA folding calculations often require a large amount of computer power

Nussinov Algorithm Example

We want to fold the following RNA sequence:

AAGUUCG

(1) Write the sequence along the top and left side of the matrix

(2) Initialize the diagonal of the matrix and one-below to zero

(3) Fill in *i*, *j*th entries according to

$$S(i,j) = \max \begin{cases} S(i+1,j-1) + 1 & [\text{if } i,j \text{ base pair}] \\ S(i+1,j) \\ S(i,j-1) \\ \max_{i < k < j} S(i,k) + S(k+1,j) \end{cases}$$

Nussinov Algorithm - initialization

	A	Α	G	U	U	С	G
A	0						
A	0	0					
G		0	0				
U			0	0			
U				0	0		
С					0	0	
G						0	0

Nussinov Algorithm U C G G U А Α 0 0 Α 0 0 Α i G 0 0 U 0 0 U 0 0 С 0 0 Fill in highlighted G 0 0 square: $\begin{array}{ll} (i = 1, j = 2) \\ S(i, j) = \max \end{array} \begin{cases} S(i + 1, j - 1) + 1 & [if i, j \text{ base pair}] & A - A \text{ don't base pair} \\ S(i + 1, j) & = 0 \\ S(i, j - 1) & = 0 \\ \max_{i < k < j} S(i, k) + S(k + 1, j) & \text{Since i = 1, j = 2, no } . \end{array}$ Since i = 1, j = 2, no k such that i < k < j

Fill in the rest of this diagonal and the one above it

Nussinov Algorithm G U U С G А А 0 0 1 2) А 0 2 1 0 0 0 А 1 i G 0 0 0 0 1 U 0 0 0 0 U 0 0 0 C 1 0 0 Fill in highlighted G 0 0 square: S(i+1,j-1)+1 [if i,j base pair] A-C don't base pair (i = 1,j = 6) $S(i,j) = \max \begin{cases} S(i+1,j) \\ S(i,j-1) \end{cases}$ = 1 = 2 $\max_{i < k < j} S(i,k) + S(k+1,j)$ k = 2: S(1,2) + S(3,6) = 0+1 = 1k = 5: S(1,5) +k = 3: S(1,3) + S(4,6) = 0+0 = 0S(6,6) = 2+0 = 2k = 4: S(1,4) + S(5,6) = 1+0 = 1

k = 5: S(1,5) + S(6,7) = 2+1 = 3 k = 6: S(1,6) + S(7,7) = 2+0 = 2

Nussinov Algorithm -traceback

Can you draw this folded RNA?

k = 5: S(1,5) + S(6,7) = 2+1 = 3

Optimal sub-structure from 1-5 (with 2 matches)

Optimal sub-structure from 6-7 (with 1 match)

Nussinov Algorithm -traceback

Can you draw this folded RNA?

 note that in reality, stems can't form if the loop is less than 3bp due to restrictions on backbone angles

Improvements on Nussinov algorithm

- Nussinov is the "core" of most RNA folding programs, but they all have bells & whistles
 - Take into account that loop must be 3 or more nucleotides
 - Not all base pairs are equal in reality (we treated them all at +1 in Nussinov)
 - Base stacking interactions

to free energy than base pairing © source unknown. All rights reserved. This content is excluded from our Creaative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Improvements on Nussinov algorithm

- Nussinov is the "core" of most RNA folding programs, but they all have bells & whistles
 - Take into account that loop must be 3 or more nucleotides
 - Not all base pairs are equal in reality (we treated them all at +1 in Nussinov)
 - Base stacking interactions
 - Penalizes interior bulges
 - Extra terms at terminal ends of RNA exposed to solvent
 - Nussinov algorithm cannot detect pseudoknots, since these do not satisfy the recursive assumption that each structure can be split into smaller self-contained sub-structures more advanced algorithms
 - With all these additions, mfold gets ~70% of bases correctly folded; pretty good on average but would likely want to do *in vivo* structure profiling of your RNA if you really want to know its structure

Happy Spring Break!

MIT OpenCourseWare http://ocw.mit.edu

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.