MITOCW | watch?v=2YW2AeDE6wU

PROFESSOR:

The following content is provided under a Creative Commons license. Your support
will help MIT OpenCourseWare continue to offer high quality educational resources
for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

Well, welcome back to computational systems biology. We're back here today
talking about genome assembly. How many people have ever assembled a genome
before? In your spare time? Anybody done any genome assembly here? One

person?

| think genome assembly is a fascinating topic. And as you know, it's at the bedrock
of all modern biology. We rely upon genome references for almost everything in
terms of studying evolution, looking at the structure of genes, regulation of genes,

differences between individuals. So it's really a very fundamental concept.

And we're going to talk today about two different ways of assembling genomes. And
| think one of the takeaway messages from today's lecture is going to be that
genome assembly is more of an art, in some sense, than a science. And one has to
always be a little bit suspicious of a genome assembly given what you're about to

learn today.

And, of course, genome assembly is becoming even more complex because it used
to be that assembling the human genome was the big task scientifically in front of
the community. But now there are billions of genomes waiting to be sequenced-- all
the individuals in the world and to try and interpret them. And now you can get your
genome sequence for between $5,000 and $10,000. How many people here are

tempted to get their genome sequenced?

OK, | see about five hands-- six hands. Great. So let's look at the science behind
genome assembly. The basic concept is that we're going to collect some sequence
reads from the genome. And we're going to assemble them know what are called

contigs for contiguous segments. And these represent uninterrupted portions of the



genome that are completely covered by reads that we believe are contiguous.

These contigs then will be paired together in scaffolds. And scaffolds are like contigs
except that there are missing parts between the contigs in a scaffold. We don't know
what those parts are. But we're able to actually glue them together by using read
pairs that allow us to jump over the missing parts because we have read both ends

of a molecule. But we don't know what's in the middle.

And then oftentimes we had physical mapping technologies where we actually can
go back and assign location scaffolds to physical locations on chromosomes by
using PCR sequences like sequence tag sites that physically locate a particular
sequence identity to a physical location on a particular chromosome. And that

provides us with a total genome map.

So today we're going to be talking about how to go from a hard drive full sequence
reads all the way down to a set of scaffolds that include assembled contigs. And the
way to think about this once again is that we start with conceptually a single copy of
the genome. We amplify this. And in order to sequence it on contemporary

instruments, we have to fragment it.

Now for those of you who were in last Friday's recitation, you heard Heng Li talking
about the idea that sequence reads are getting longer. In fact, sequence reads up
to 10 to 15 kilobases are now possible. And sequence reads even longer than that
are going to be possible, which will greatly simplify the assembly process. But for
now we're talking about the challenge of assembling short reads-- say 100 base

pair reads off of contemporary sequencing instruments.

So we take the fragmented reads and the notion is that we know that they're going
to align up like a puzzle. And all we have to do is line the reads up to recover the
read sequence at the bottom-- the original genome sequence. And | should add that
many of the illustrations in today's lecture are from Ben Lagmi. He was kind enough

to allow me to use them for today's talk.

So the goal is to come up with that red sequence at the bottom from the original set

2



of reads but, of course, the read set that we're talking about is perhaps 200 million
reads or even a billion reads as we'll see. And so it's quite a tough task to put pieces
together given that we really don't know where they came from. And we don't know

where they align because we don't have the red part to guide us.

Now today we're going to be talking about what's called de novo assembly. That
means starting from scratch. You hand me your set of reads for your favorite
organism. And we're going to assemble it today. That's different than what's called
reference-guided assembly because, for example, if you're going to re-sequence
me or you, there is a reference human genome. And it would be a simple matter to
take the reads from you or | and map them back onto the reference genome as a

guide to trying to reassemble our genomes.

However, as you can tell, if there's a large structural variation between the
reference genome and our genomes, that process can fail. So we're going to be
talking today about de novo assembly. And in the process of de novo assembly,
oftentimes we talk about coverage, which is on average how many sequencing
bases do we have for every base of the genome. Here we have for this little

illustrative example coverage of about 7x.

Now, at the origin of the Human Genome Project, some calculations were done
about how much coverage was required to cover the human genome. And we
talked last time about library complexity. This is a slightly different idea, which is we
want to estimate the probability the base is uncovered. So if we have the genome
size as G and the number of reads as N and L is the length of a read, then N times
L is the total number bases that we have. And that divided by the genome is the

average coverage of a base.

And probably the probability that a base is not covered is the probability we're going
to observe zero reads to that base, which is e to the minus lambda, roughly
speaking, if we use a Poisson approximation. And therefore, the number of

uncovered bases it will have is going to be roughly G times e to the minus lambda.

The next calculations can be thought intuitively as the following way, which is if we
3



AUDIENCE:

PROFESSOR:

have N reads, if there's going to be a gap after a read, there has to be an
uncovered base after it. And so the number of gaps we're going to have in our

assembly is roughly N times e to the minus lambda.

So this is a back of the envelop calculation. And now if we take some of our 1,000
genomes data, which we previously used and asked how well this approximation
works, we see something like this where the x-axis is the total number of reads and
the genome coverage in bases is shown on the y-axis. And these are all different

sequencing experiments.

So you can see there the roughly green outline, which follows the approximately
what we saw before in this Lander-Waterman rule. Could somebody tell me what
they think is going on with the red lines that actually don't match up with that green
line? Anybody have any ideas about why we need more reads out of those libraries

to get better coverage? Yes?

There is probably some bias when you're amplifying them?

Yeah, there's probably skew in the original libraries we talked about last time. In
fact, we talked about last time why the Poisson was not a great approximation for
looking at libraries. And in fact, we might want to fit something like a negative

binomial in this particular case.

So we've got our read set. And we can also talk about coverage at a particular
base, which is different than average coverage just to be clear that there are two
different kinds of coverage that one can think about. Here we see coverage at T of
level six. And the other thing that we need to be cognizant of is that there are two
reasons that we might-- two common reasons why we might actually see reads that

overlap but don't agree at all positions.

The obvious reason is that there's an error in one of the reads. We get quality
scores and so forth. And that can help us decide which is the truth. But the other
possibility is that as you know, you have one of each of your chromosomes from

mom one from your dad. And there could be allelic differences between these



chromosomes.

So when we're doing assembly, oftentimes we'll find that these allelic differences
are going to pop up in terms of non-concordance of our reads. And we'll have to
ultimately decide if we want to make a single diploid approximation of a human
genome or we want to attempt to assemble a diploid genome. And if we're going to
do a diploid genome, then we have to be quite careful and use somewhat different

assembly techniques.

But the common reference genome is haploid. It's only considering one
chromosomal sequence. Is that clear to everybody? OK, great. So we're going to
talk about two general approaches to assembly today. We're going to talk about
overlap layout consensus assemblers as exemplified by a string graph assembler.

And we're also going to talk about De Bruijn graph assemblers today.

Now, overlap consensus assemblers were the first ones that were used in the
Human Genome Project because reads were longer back then. However, as the
number of reads has increased, those assemblers are more difficult to utilize in part

because of the need to find overlaps between reads, as we'll see in a moment.

Whereas to De Bruijn graph assemblers are somewhat more efficient. But they lose
certain kinds of information. So let's begin with these overlap layout consensus
assemblers. And we're going to talk about three steps to build contigs and the
scaffolding step can be thought of a similar between either the overlap layout

consensus assemblers or De Bruijn graph-based assemblers.

So we're going to first build an overlap graph. What's an overlap graph? The
essential idea is that when we take our collection of reads, we look for overlaps
between the suffix of one read and the prefix of another read. And if we think of all

of our reads, we want to build a graph that describes all of such overlaps.

And just to be clear, I'm not going to be talking today about the reverse complement
of these reads. Actual assemblers have to represent that. But it just duplicates all

the nodes at edges. So we're going to try and keep things uncluttered by-- that's



OK. Thank you. We're going to try and keep things uncluttered by not considering

those today.

Now, one of the challenges is how to construct those overlaps. And we're going to
be talking about graphs a lot. So | thought it was worthwhile just to review
terminology. We're going to represent overlap graphs as directed graphs, which
consists of a set of vertices, which are the objects represented by the circles in the

edges, which are the lines and a directed edge goes from one vertex to another.

And there's also an equivalent representation in notational form on the lower part of
the right of the slide as well as a graphical representation. We're going to be using
the graphical representations of these directed graphs today. So the overlap graph

is simply a representation of the overlap between reads.

And we pick a minimum length of overlap at times. But for the next few slides, I'm
simply going to represent each node as an individual read. And the edges will be
annotated with the amount of overlap between the reads. So if | hand you a set of
reads, all we need to do is to compute this overlap graph. We'll talk about how to do

that in a moment.

And you'll see graphically then what comes out of the process of computing the
overlap graph. Now, it's possible that overlap graphs are cyclic because there are
circular chromosomes. And as we'll see, it's also possible to get a cyclic graph out of
a linear chromosome if in fact there are repetitive structures in the chromosome that

cause a graph to cycle back on itself.

So how to find overlaps in efficient time is a key problem. And that's one of the
reasons that people have shied away from using these types of assemblers is
because the cost of computing overlaps has been thought to be N-squared where N

is the number reads because you have to compare all the reads to one another.

However, a really clever algorithm was devised that used the technology we talked
about last time. You recall the idea of the FM index and Burroughs-Wheeler

transforms allowed us to index a genome and then to look up reads in time



proportional to the length of the read.

So here's the essential idea. What we're going to do is we're going to take all of the
reads that we collect. And we're going to index them. And we can do that roughly at
N log N time. And after we've indexed all of the reads, then we can use that same

index to find overlaps very, very efficiently.

And you can conceptualize this as simply looking at a read that you have in your
hand and looking it up in the index. And you'll find all the places that the suffix or
prefix of that read batches. And you can trace back till you find all the places it
matches where they hit an end of a read. And those all correspond to edges in the

graph.

And it turns out that this is so clever that it eliminates redundant edges. So, for
example, if | have reads that look like this where | have read one overlaps with read
two which overlaps with read three. And read one and read three also overlap. An

unreduced graph would have a representation like this.

But it turns out that we don't have to do that because we can simply reduce our
graph to this because we know that read one and read three. Actually, this is the
graph that we would have that would be unreduced. We can reduce the graph to
eliminate this transitive edge and simply represent it in this fashion. So when we use

these indices, we eliminate these transitive edges as we'll see momentarily.

So here's an example graph. The sequence is shown on the bottom. The read
lengths are of length seven bases. And we're going to consider all overlaps a
minimum size three. And the edge label is the actual length of the overlap between
the reads. And you can see that at the outset that these overlap graphs are not
necessarily simple. That tracing a path of the graph that represents the original

string is not completely and totally straightforward.

So we need to come up with a way to articulate our metrics for how to trace a path
to the graph to reconstruct a genome. And that comes to the question of layout,

which is how do we formulate the problem of tracing a path through an overlap



graph?

So we'll first start with the idea of the shortest common superstring. The shortest
common superstring of a string S is the shortest string that contains all the strings in
S as substrings for a particular length of substring. So, for example, if we didn't have
the constraint of shortest, then just finding a string that contains all the substrings is
easy. You just put them all together. But if we want the shortest, then we need to be
more thoughtful in terms of the way that we compute this shortest common
substring. And here is an example of the shortest common substring for the

substrings that | have shown you up there.

So one way to think about the assembly problem is that we're trying to compute the
shortest common substring of all the reads that we have. And that will be the most
efficient representation of those reads in a linear sequence. Now, we can describe

this problem in terms of an overlap graph.

And if you think about the way that we would solve this in overlap graph, in the
shortest strings, we want the maximum amount of overlap. So we want to trace a
path through the overlap graph that gives us the largest amount of overlap, which
gives us the shortest string. Right? So if we simply negate the overlaps, we want to

minimize the total cost of the graph.

Now, it turns out that this problem is known to be a very hard computational
problem. It's in the class of something called NP-hard because it's known as the
traveling salesman problem. And when you think about the fact that we're going to
have hundreds of millions of reads, this is not really going to be tractable. If we got
rid of the weights, and we simply wanted to find a path through the graph, that's

called the Hamiltonian Path problem. That's also NP-complete.

So the shortest common substring is a way to think about assembling. But we can't
really necessarily optimize metrics because it's going to be intractable. So think
about ways of doing this that are greedier. So here's an example of how we would
compute the shortest common substring starting with the first string. And each step

along the way, is a concatenation of strings or a collapsing of strings that works



AUDIENCE:

PROFESSOR:

towards building the shortest common substring.

And we get the input string and the output string. So we could articulate our
assembly problem as a greedy SCS algorithm to try and put all the reads together
to come up with a superstring. And let me just describe to you this will give us an

intuition into what goes wrong with assembly in a moment.

But we do know there are some bounds on this-- that if we actually did the greedy
algorithm, then the assembly that we got would be only two and a half times longer
than the true shortest common substring. That isn't really very much comfort to us.
So we're going to have to come up with different, more heuristic ways of

approaching the assembly problem.

Here is another example. Now, this is the one that | want to show you where we
start with a string at the top where we're going to be looking for minimum overlaps
of three and these are reads of six long. And when we do this greedy algorithm, we
come up with a string, which is shorter than the original beginning string we started

with.

Can somebody see what happened here? Why are we missing part of the original

string? Yes?

The reads were short enough. And they repeated enough that we never found out
that it was of the length that it actually was. And so we just kind of [INAUDIBLE] did it
[INAUDIBLE].

So the point was that the reads were too short to be able to unambiguously identify
the number of repeats of long that we had in the original sequence. That's
absolutely correct. So we're not able to disambiguate what was going on. And
perhaps if we went back to our graph formalism we could solve this problem, right?
Because here we have our graph and the overlaps are written in on the edges of
the number bases that each one of these reads overlaps. And all we need to do is

to trace through this graph to find the original string.

So here is one tracing, which gives a total overlap of 39, which actually faithfully



reproduces the original string, right? However, that's not the best tracing. A better
tracing through this graph or path through the graph would be this, which gives us
more overlap and gives us a shorter string. But as we know, even though it's better
according to this metric, it isn't really optimum because it gives us the wrong

answer. It's better but wrong.

So we're going to have to take into account other things when we do our assembly
and our tracing of this graph to be able to come up with the best possible assembly.
So if we increase the read length as was pointed out to span appropriately, we will
be able to reconstruct the original sequence. And the point of this example is that
we need to consider this when we're thinking about recovering repeat structures in

genomes.

So if we don't have long enough reads, in this case reads of length 8, we're not
going to go to recover the original repeat structure. And if we look at this, repeats
are really the bane of assemblers in some sense. And as you know, roughly 50% of
the human genome is repetitive content. So we need to be very, very careful in
terms of the way that we utilize reads to be able to recover the best approximation

of our genome sequence.

So here's another example where we look at | is minimum over length and k is the
length of the reads. And you can see the sequence that we're trying to recover--
It_was_the best_of_times_it was the worst_of times-- and the output from our
greedy SCS assembler. And as you can see, we need to get up to a read length of

13 characters for us to be able to properly assemble that original sentence.

So the essential message here is that unless you have reads that are long enough
to span repeats, you're not going to go to recover the original sequence exactly.
And this can be also thought of in the following example. Imagine you have repeats
that are tandem repeats out at the end of a sequence. And we're using the English
language here because it's easier to see than if | put up a bunch of genomic

sequence. But, of course, the principles are the same.

You can see that unless we have reads that actually are anchored and unique
10



sequence and span out towards a repetitive sequence, we can't really tell how many
times the word bells is repeated. Another possibility is that we can actually coming
from both sides. And if we can anchor our reads and unique sequence on both the
left and the right side of a repetitive element, then we can figure out how many

copies of something like bells is present.

But in the absence of that, we really can't do it. In fact, we wind up with a structure
looks like this. We wind up with-- there it is-- a structure where we have-- let's just
say that there are four different stretches of genome in disparate parts of
chromosomes and we repeat sequence in the middle. The blue parts of the

chromosomes are unique sequence. And the red parts are repetitive sequences.

What will happen is that if the reads aren't long enough, we'll be able to find out in
each one of the four locations that we've gone from unique sequence to repeat
sequence. And then we will get lost in the middle of this identical repeated
sequence. And then on the right-hand side we'll once again transition back from
repeated sequence to unique sequence. But we won't know how to put things
together in the middle. Right? We won't be able to figure out what the path is

through these repetitive elements.

So that's the essential point I'd like to make about repeats. And we can now turn to
the question of layout and how to process an overlap graph towards making
contigs. This is the actual layout graph. When we think about that sentence up
there. And we say the minimum over that length is four characters. And we have

seven-character reads out of the sequence. You can see it's a pretty messy graph.

If we clean up the graph by removing the redundant edges, the edges like this that
span over reads and are implied by other reads, we can remove edges that are
transitive over one reads or two reads. Now, my presentation is going to talk about
how to remove these edges. However, as | said at the outset, if you use the
algorithm by Simpson et al., you actually don't generate these transitive edges in

the first place.

But assuming that you didn't use an algorithm and you did generate them, you want
11



AUDIENCE:

PROFESSOR:

to get rid of these transitive edges like so. And it starts getting somewhat simpler as
you begin simplifying the graph, removing these transitive edges. And then we can
remove edges that skip two nodes. So here's what happens after you remove the

single transitive edges in this graph. Yes?

So it seems that the transitive and verbal edges gave us a little bit more information

about the genome. Do we lose some useful ordering principles by--

They provide redundant information. They don't really provide any additional
information. It's the same linear sequence that's implied by those edges. Any other

questions?

So we can then remove edges that span two nodes. And we get an even simpler
graph like this. Now this is beginning to look more tractable because we can look at
this and we can output contigs that correspond to linear portions of the graph, which
should be linear sequence. And when we do that what we wind up with are two
contigs. And there's just a bit of problem in the middle, which is that we're unable to
resolve the bit in the middle and as a consequence, we know that that is the number
of terms that are in that original sentence because we didn't have a read long

enough to be able to resolve that.

The other problem that we can have in doing this kind of layout is that when there
are portions of the genome that occur or sequences in the genome that occur
multiple times, when we actually do this layout, we may find that the portions of the
genome that occur in two disparate locations line up with one another. And it may

be that as you exit the portion that's shared you get a mismatched base.

So that mismatch could be because you have disparate parts of the genome that
actually have very similar sequence. Or it could be that you had a read error at the
end of your read. And it's difficult to tell the two apart except by the amount of
coverage that you have. We'll talk about how to prune graphs like this in a few

moments.

But in any event, assuming that we have pruned the graph, we have done our

12



overlap. We've done our layout. We've found our paths to the graph for our contigs.
And then what we find is that for each contig, we have many reads. And we're going
to take those reads. And we're going to look at them. And as you recall, we could

either have errors causing disagreement among the reads.

We could have allelic differences between mom and dad causing those errors, well,
not really errors-- differences. And then we can take a consensus to come up with
what the haploid genome is. So that's the essential idea of a overlap layout
consensus assembler. We compute the overlap graph. During the layout phase we
actually simplify the graph. And we find pass through it. And during the consensus

phase, we take our reads, and we build a consensus sequence of the genome.

And as | said, this graph building can be slow. Although, we'll talk about how slow it
is here in just a moment. And the challenge is that modern sequencing data sets
are hundreds of millions of reads. So let's talk about a contemporary overlap-based
assembler-- something called the stream graph assembler, which is done over at

the Sanger in the UK. And there are three separate steps it goes through.

The first step is it tries to correct reads. And the way it does this is it actually looks at
all the k-mers that occur in reads-- it tries to find sequences that are very, very rare
and find sequences that are nearby in sequence base that aren't as rare. And it can

correct bases that it believes are sequencing errors.

The next step is assembly once it has taken all these reads and corrected them. It
indexes all the reads as | suggested earlier using an FM index. And then it can find
the overlap from that FM index directly. And part of the assembly process is
throwing away duplicate reads and throwing away reads that have low quality

Scores.

So that's the filtering step. It then has the set of contigs that it has generated. And it
does something quite interesting to find the scaffolds is that it takes the contigs it's
assembled in terms of linear sequence. And it completely re-indexes them once

again using an FM index.

13



AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

And then it takes all the reads that you started with. And it maps them back onto the
contigs. And by mapping the paired reads back on to the contigs, it can actually
figure out what contigs should be formed into scaffolds where there are holes that
are breached by these longer reads. So it's using the FM indexed both for
correction to find out nearby k-mers for assembly to find overlaps and for

scaffolding to put things together. And it does its indexing three different times.

And just to give you an idea of how long it takes for a human-sized genome, it's
actually quite expensive in terms of CPU time. It takes many days have elapsed
time to assemble an entire human genome right now. And it's thousands of CPU
hours to actually put a genome together starting from scratch. OK, so that's the
essential idea of an overlap-based assembler. Are there any questions at all about

overlap-based assemblers? Yeah?

So in the case of an error , it's obvious how you would call that. But in an allelic
difference, hypothetically, there would be 50% of the reads would have one and

50% of the reads would have another.

That's correct.

So in that case does it assemble-- do you just bias towards whichever ones weren't

easily amplified? Or do you assemble two sequences?

Most assemblers produce a single sequence. And | don't know how SGA decides
between the different alleles because | don't recall what the paper said they did. But

they have to essentially flip a coin to come up with a haploid sequence. Yes?

You said there was three different times that you index. What are the three?

Yeah, the question was | said there are three different they indexed. They indexed
at the outset to find errors. They indexed the second time to do the overlap
computation. And they indexed the third time to realign all the original reads to the

contigs they have to figure out which contigs to put together into scaffolds. Right?

But they have this essential foundational platform, which is the FM index. And so

14



they use that over and over again to be able to do the assembly. These are all great
questions. All right, any other questions about overlap-based assemblers. And you
can see that if you think about how much coverage they get out of an assembler like

this, it's actually, we'll compare all the assemblers at the very end.

But if you look at the number of bases of autosomes and the X chromosome
covered by an assembly, you can consider that as a function of the minimum
alignment length to a referenced genome. And as the minimum alignment length
goes up, that means you have to match longer and longer portions of the reference
genome for your assembly contig to count. You can see that the number of bases
dropped somewhat. In here they're showing that they do better than another

assembler called SOAPdenovo.

But they do get a fairly good coverage. On the other hand, they don't get coverage
anywhere near as good as Lander-Waterman might suggest because the coverage
should suggest that the probability of uncovered base using Lander-Waterman
would be roughly e to the minus 40th-- something like that. And e to the minus 40th
is like 4 times 10 to the minus 18. So they're not anywhere near what we would

think the Lander-Waterman bound would be for assembly.

So we've talked about these overlap-based assemblers. Now I'm going to turn to De
Bruijn graph assemblers. How many people have heard of De Bruijn graphs before?
Anybody? One person? So before we talk about De Bruijn graphs themselves, let's

just talk terminology. So when I'm using terms we're all on the same page where we

were talking about k-mers where the word mer is from the Greek "part."

And we talk about 4-mers of an original sequence as a sequence that's four bases
long. And we can think about all of the 3-mers of an original sequence. So we talk a
lot about k-mers. And a k minus 1-mer is a substring of length k minus 1 obviously
from a k-mer. So if we think about the collection of reads-- here these are our
super-simple economy sequencers producing reads of only length three, which is

pretty desperate. But at any rate we'll go with that for the time being.

And we think about each one of these reads as having a left k minus 1-mer and a

15



right k minus 1-mer. We split them into two halves that way. And we're going to build
a graph that is as follows. We're going to take all of the k minus 1-mers-- in this
case the 2-mers. And for each read, we're going to draw an edge between its left 2-

mer and its right 2-mer.

OK, once again, for each read, these sort of anemic, three-base-pair reads, we're
going to draw an edge between its left 2-mer and its right 2-mer. And they overlap
in one base. So all of the graphs that are De Bruijn graphs, the edges represent an
overlap of one base. OK? So if you look at the graph at the bottom, that represents
the overlaps present in the original sequence. You note that we have AA as one of

the 2-mers. And its left half and right half obviously overlap by one base.

The triple-A read has AA as its left read and AA as a right read-- thay overlap at one
base. And that's why we have that circular edge from A to itself. And the next edge
from AA to AB comes from the next read-- the AAB read. So each edge then
represents an overlap of one base. And therefore, each edge represents a unique

k-mer sequence.

So the way to think about this graph is it that all of the edges represent the original
reads. And we have represented the k minus 1 words as the nodes. OK? So we can
take this graph then and generalize this idea. And if we look at how the graph
changes as we add more structure, here you see that we've added an extra b. And

we get another edge in the graph back to the same node.

So when we're building these graphs, if possible, we reuse a node that already
exists. Now the way to think about coming back to the original sequence is finding a
path through this graph and emitting sequence as we trace the path. And we would

like to have a path that traverses all of the nodes.

And so we have some definitions here, which is that a node is balanced if its
indegree equals it's outdegree. And you can see that not all the nodes are balanced
down the graph of the lower, right-hand corner. And it's connected if all the
components or nodes can be reached. And a Eulerian walk visit each edge exactly

once, which is what we would like to actually take a De Bruijn graph and emit a
16



genome sequence.

Now, not all graphs have these walks. And graphs do our Eulerian. And we won't
distinguish different types of these graphs. And if a graph has two semi-balanced
nodes and all the rest of the nodes are balanced, then it will have a walk through it.
So if we think about our original graph, there are two arguments for it having such a
walk. The first argument is that we show the walk. And the second is that we have

two semi-balanced nodes and the rest of the nodes are balanced.

So the reason that we care about this is that we want to study cases where this
goes wrong. So to build a De Bruijn graph of a genome, we're going to take our
original sequence reads. And we're going to take all the k-mers that occur in those
reads. And we're going to add edges to a De Bruijn graph based upon those k-

mers.

So if we have a read like this, and we consider a k-mer in the read, we're going to
add an edge in the graph between the left K minus 1-mer and the right k minus 1-
mer. And we'll do that for every single k-mer in the read. Now note what this does is
it destroys some information. It destroys information about the ordering of certain of
the k-mers in this read just destroying their read contiguity in order to make some
simplifying assumptions to represent the sequence ordering of these k minus 1-
mers in the graph. So we build the graph in this way and if | were to build the graph
like this, what is the minimum sequence overlap for two reads to actually share an
edge in the resulting graph? Can anybody see how long the sequence must be in

the second read for it to actually overlap at edge with the first read?

Well, if this second read also has a k-mer, right? It's going to produce another
structure just like this one if these two do overlap. And thus the edge produced by
this read and the edge by this read will overlap like this. And thus all of the nodes
that came from this part of read one will feed into this graph. And then all the nodes

to come out of this k-mer from the purple read will come out of it like so, right?

And thus when we're tracing the graph, the idea is that the graph will be connected.

And we'll be able to come between these reads and reconstruct the sequence that
17



AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

was suggested by the overlap. The thing, however, you should note in this-- yes,

question?

So you're picking two k minus 1 reads there-- are those from different reads? Or

from the white read?

No, it's from the white read. These are the 2k minus 1-mers that came out of this

read. So they actually overlap.

Yeah, but then you were talking about how the one was purple in that case.

Right, well, this is the same sequence let's say. This is the same, exact sequence
down here. So if it's the same, exact sequence, it will have the same k minus 1-
mers. And when we build the graph if a node already exists, we reuse it. And thus if
we reuse the nodes that were created when we built the graph nodes and edges for
the white read, then when the purple read comes along, we're going to put another
edge here between these two k minus 1-mers because they are contained here as
well. So these are identical sequences to this because these two reads overlap. And

this part is the same sequence as that part.

Yeah, so why do you need k minus 1-mers if you have overlapped k?

Because the way we're finding these overlaps is through the graph. And we're not
indexing things of size k, right? We're indexing things of size k minus 1. In each
edge represents a sequence of length k because we know this sequence and this

sequence are overlapped by one base.

So when we find an edge that's the same between the white and the purple read,

we know that they're overlapping by k bases. Is that making sense to you?

No.

No, OK, so let's try it again.

You can keep going.

18



PROFESSOR:

AUDIENCE:

PROFESSOR:

No, it's OK. Let's just start with the purple read to start for a moment because | think
if you have a question, other people may have a question. So we have this
sequence, which is this sequence right here, right? And then we have this
sequence, which is the sequence right here. They overlap by one base. And so we

put an edge between them like this in the graph. OK?

Don't they overlap by more than one base? They can only contain one base from

each k-mer.

I'm sorry. That's what | meant. Yeah. And then the same thing is true down here.
And so we will find this k minus 1-mer and this k minus 1-mer. And then they
overlap. For genome assembly, we record the forward and reverse complement
reads in twin nodes. And we're not going to show those because it just complicates

our graphs without really adding any illustrative power.

And we always choose k to be odd so that a node can't be its own reversed
complement. And here is the graph growing if we think about k equals 5. So we
have reads of length five. And we are adding sequences to the graph. And you note

that the graph is acyclic until we get to the repeated sequence.

And we get to the second long the sequence comes back around begins a looping
back on itself. And if we consider the last part of this De Bruijn graph construction,
then we wind up with the finished graph on the right-hand side. And you can see the
multiplicity of the edges correspond to the number of times the long is repeated in

this graph.

So once again, repeats are causing the circular structure, which only could be
resolved if we had sufficiently long reads, which we don't have in this particular
case. However, if we consider perfect sequencing we always have a path to the
graph. And the reason is that the leftmost part of the genome, so to speak, is going
to be semi-balanced. And the rightmost part is going to be semi-balanced. And all

the parts in between are going to be balanced.

So the k minus 1-mer on the very left end is semi-balanced and the k minus 1-mer

19



on the right is semi-balanced. And all the nodes in between are balanced. Now, this
does not allow for errors of course. And we talk about following this Eulerian walk to
find the original sequence. But the question we can ask ourselves is whether or not

this walk always really corresponds to the original genome sequence.

It turns out | can show you this example, which is we have this graph for this
sequence. And there are two different walks through this graph. And the two
different walks produced two different sequences. And they depend upon which way

you start walking from the node AB.

So once again, here we have seen that even when we have a path to the graph, the
path may not be unique. It may not be able to generate the original sequence that
we started with. So the other problem we can have when we are building a graph

like this is that gaps in coverage can create holes in the graph.

So if we omit certain of our reads, we'll come up with a graph that is broken into two
parts. And this corresponds to the idea that we're going to create two different
contigs that are contiguous sequence but will be unable to fill in the middle part.

OK?

So we also can have differences in coverage of a graph when we have extra reads
at particular locations in the genome. And that causes the degrees on the individual
nodes to vary and causes us to not be able to rely upon the indegree and

outdegree as an absolute metric for how to trace a path through the graph.

And the other thing is that if you have differences between the chromosomes, which
we talked about last time in our overlap layout consensus assembler, it also can
cause graphs to split apart and to have subgraphs that correspond to one allele

versus the other allele, which is present perhaps in the main graph.

All right, so it's actually the case that these graphs are attractive for a very important
reason, which is there extraordinarily efficient to build. That is in order to build a
graph like this, you need to take each one of these k minus 1-mers and actually find

the node, which you can do by hashing and then put the edges into the graph. And

20



so you find that you need to put in an edge and two nodes for each k-mer. And if
you have a hash map that encoded these nodes and edges, it's constant time work.

So you wind up with a graph which costs order of the number of reads to build.

So it's a linear time graph construction problem. Recall that our last overlap
construction, we thought we could get down to N log N. And here is an example of
sub-setting part of the lambda phage genome using a De Bruijn graph assembler.
And you can see that roughly the time required to assemble parts of the genome is

linear in the amount of genome sequence that you give it.

So these assemblers were favored early on in the days of short-read assembly in
part because they were so efficient. And typically in some of the projects, you have
very high coverage. And so you wind up with graphs that actually have a huge
number of edges between nodes. And this can be summarised in terms of a graph

that simply annotates the edges with the number of instances.

And so you have a weighted graph on the right-hand side, which is easier in some
sense to trace because we can now begin to eliminate low-coverage edges as

potential anomalies. But the essential idea is to trace these graphs to produce the
ultimate genome sequence. And in order to do so, we may need to do some error

correction.

So we talked earlier about the idea that if we have an error, we're going to actually
produce a portion of the graph that hangs off into outer space. And we can cut
these dead-end tips of the graph off if they are low coverage because they

presumably correspond to errors.

If we get an error in the middle of a read, we can wind up with a so-called bubble in
the graph, which once again is low coverage. And we can get rid of these bubbles in
a similar fashion. And it's also possible to get chimeric edges of the graph. And

those can be caused by errors as well. And we can clip those edges.

So there are different kinds of error correction we can do in the graph. These are all

quite heuristic. Each assembler has its own set of heuristics for how to deal with

21



AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

graph anomalies and how to eliminate edges in the graph to permit assembly. But
these are getting rid of dead-end tips and popping bubbles and getting rid of

chimeric edges are important things to consider for any assembler.

So the limitations of these graphs are the idea that we're immediately splitting these
reads into this k-mer representation, which is destroying information. And in order to
overcome this, one of the things that people have done in these De Bruijn graph

assemblers is to take the original reads and to map them back on to the graph.

So when you're attempting to trace the path through the graph, what you do is you
take the original reads. You thread them through the graph. And you know that the
original read represents contiguous genome sequence. So it provides you with a

path through the graph that you know is good.

People have been doing this in part because they didn't want to go to the full
overlap graph implementation because of the cost. But | think that these overlap
graph implementations now are sufficiently sophisticated that | personally would use
them instead of a De Bruijn graph assembler. And so the trade off really centers

around speed and space versus accuracy.

So we can look at some example assemblers and look at their performance. But
before | do that and we leave De Bruijn graphs, are there any other questions about

De Bruijin graph assemblers?

| have one.

Yeah, question.

How long is k typically?

We're going to talk about that. The k typically is somewhere around 60-- something
like that-- Somewhere in that neighborhood. It's actually-- it has to be odd, right? So
61, 57-- something like that. Good question. Any other questions about De Bruijin

graph assemblers?

So once again returning to over our architecture, we have these reads. We need to
22



produce contigs. In the case of overlap graphs, we're going to trace the overlap

graphs. In the case of De Bruijn graphs, we're going to trace the De Bruijn graph.

For scaffolding, we can use the read pairs to put scaffolds back together again. And
here is some comparison of the performance of these various assemblers. So the
first assembler-- SGA-- is an overlap layout consensus-style assembler.
Velvet/Abyss and SOAPdenovo are all De Bruijn, graph-based assemblers. So

these are all contemporary assemblers that people use for assembling genomes.

An important metric for assemblers is something called N50, which is the size of a
contig or scaffold where at that length or larger 50% of the bases are present in
scaffolds of that length. So, for example, for SGA, they say that scaffold N50 size is
26.3 kilobases, which means that in scaffolds of length 26.3 kilobases or larger, half

of the bases of the assembly lie.

So the larger the N50 is, the larger the scaffolds are that cover things. And you want
larger and larger scaffolds or contigs so that you have fewer gaps in your assembly.
So the N50 number is a principle comparison metric when one is thinking about

assemblers.

So in this particular case, for SGA the overlap metric was that the reads had to
overlap by at least 75 bases or more. And these were 100-base pair reads. You can
see the details on the read data on the bottom line there. So as long as the reads

overlap by 75 bases, they were put together in the graph.

And the De Bruijn graph assemblers each had their own optimum number for k. And
the way that you tune these parameters is you run the assembler on a range of k
values. And you see which k value produced the assembly with the highest N50.

And you pick that k.

Can anybody think of a reason why it is that although these are all roughly in the
same ballpark, different assemblers might have different k values given that the

underlying technology is quite similar? Any guesses about what is going on here?

23



Well, we know that the differences in the assemblers really are rooted in the way
that they are processing the graphs and the way that they are simplifying them. And
therefore, one has to imagine that the differences lie in the post-processing of the
graph once it's built and that certain assemblers like larger k values. Whereas other

ones can tolerate smaller k values.

And you can see if we look at the running statistics for these, that the performance
of SGA if you look at the reference bases covered by contigs greater than one
kilobase is roughly comparable to all the other assemblers. But its mismatch
performance is much better. That is the other assemblers are producing-- well, |
take it back except for SOAPdenovo. But it does quite a good job at correcting reads

in coming up with the correct sequence.

The last lines however tell the story about running time, which is that the overlap
consensus assembler is taking 41 hours of CPU time for C. elegans genome
assembly. Whereas the other assemblers, the De Bruijn assembler are running

much faster.

So the thing that | wanted to emphasize today was that once you have the final
graph whether it be an overlap graph or a De Bruijn graph, which represents
possible ways of putting back together again the jigsaw puzzle, it still is an art to be
able to build an assembler that uses appropriate heuristics to trace the graph to

come up with a genome sequence.

And | think another lesson is that repeats are very problematic. With short reads, we
really cannot resolve repeats exactly. As a consequence, when we think about any
reference genome that we're dealing with, if we consider the size of the reads that
were used to assemble that genome, then we need to be mindful of what that tells
us about whether or not the repeat structure that we're observing in the genome is

really an accurate rendition of what's going on in the genome itself.

And finally, | think that we've talked today about the problem of assembling
genomes from a set of reads that represent a uniform, single individual albeit with
possibilities of differences of alleles between mom and dad in a diploid organism.

24



However, environmental sequencing where one takes up sea water or other
samples and sequences all the organisms in it and then attempts to assemble those
organisms de novo admits the possibility that there are many different genomes that

you're considering.

And that, of course, creates a whole new set of research problems, which | think are
unsolved in part because of the read links that we're currently dealing with. Are
there any final questions about assembly? OK, great. Well, we will see you then on
Thursday where we will talk about ChIP-seq and IDR analysis. Until then, have a

great Wednesday. Thank you very much.

25



