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5C maps interactions between defined primers
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Dostie, Josée, and Job Dekker. "Mapping Networks of Physical Interactions Between
Genomic Elements using 5C Technology." Nature Protocols 2, no. 4 (2007): 988-1002.
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5C maps interactions between defined primers
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5C maps interactions between defined primers
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Dostie, Josée, and Job Dekker. "Mapping Networks of Physical Interactions Between

Genomic Elements using 5C Technology." Nature Protocols 2, no. 4 (2007): 988-1002.
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DNA methylation

, ’ Addition of a methyl group to a cytosine within C-G di-
nucleotides which are frequently located in the regulatory
regions of genes.
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TGGGCAGTCTACGCTAC A mechanism for gene silencing

<  preventing binding of regulatory factors
> affecting chromatin status

CpG methylation is a lasting form of epigentic modification
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Cell division
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Maintenance methylation

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Today’s Narrative Arc

1. Usually, you are more like your relatives than random people on
the planet.

2. The heritability of a trait is the fraction of phenotypic variance that
can be explained by genotype

3. Computational models that predict phenotype from genotype are
key for understanding disease related genomic variants and the
most effective therapy for a disease (pharmacogenomics)

4. We will computationally predict quantitative phenotypes by
adding the contribution of individual loci (QTLs)

5. Typically our models can only predict a small fraction of
phenotypic variance — the so called “missing heritability” problem
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Today’s Computational Approaches

1. Linear models of phenotype that use stepwise regression
and forward feature selection

Test statistics for discovering significant QTLs

Measurement of narrow sense heritability (h?), broad sense
heritability (H?), and environmental variance
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OMIM - authoritative compendium of human genes and
genetic phenotypes related to Mendelian Inheritance

Courtesy of Johns Hopkins University. Used with permission.
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Statistics review

1 N 1 N
ﬁz’“ 0% = ﬁg(xi_“x)z - E[(X_“x)z]

2 _ _ Covariance
Oxy = E[(X Mx)(Y My)] =0 when X and Y are independent



Genotype to Phenotype

* Genotype
— Complete genome sequence (or an approximation)

— Can be defined by markers at specific genomic sites that
describe differences with a defined reference genome

* A phenotype is defined by one or more traits
* Non-quantitative trait (dead/alive, etc.)
* Quantitative Trait

— Fitness (growth rate, lifespan, etc.)

— Morphology (height, etc.)

— Gene expression

e (Quantitative Trait Loci - Marker that is associated with a
guantitative trait

— eQTL — marker associated with gene expression
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Binary haploid genetic model

1 2 N 1 2 N
e I - X - .- -
Necessary
for No No No Yes Yes Yes
phenotype &
: 1 2 N
F1 generation -4 F —-

Example Phenotype
Alive/Dead in a specific environment
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Binary haploid genetic model

1 2 N 1 2 N
o B L - X - .- -
Necessary
for No No No Yes Yes Yes
phenotype &
: 1 2 N
F1 generation - - —_-

Example Phenotype
Alive/Dead in a specific environment

N is estimated by log, (# F1s tested / # F1s with phenotype)

11
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Quantltatlve hapI0|d genetlc model
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I I -|:|— X ---- --

Effect 5 o 0 1N 1/N 1/N
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Quantitative haploid genetic model

1 2 N 1 2 N
- F_F - X - .- -
Size &
1 5 N Example Phenotype
- -~ - Growth Rate
—— Normal p.d.f.
N , Binomial p.m.f.
p(x? N) = (1 _ .S)N_I_Sx -:}.25?
X cu.z;
E[x]=.5 =

o2 =25/N

© cflm on wikipedia. Some rights reserved. License: CC-BY-SA.
This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Genetic linkage causes marker correlation

1 1 N-1 1 1| N-1
- - - X - -
Proximial 1 1 N-1
genomic - - -

locations makes
crossing over
unlikely during
meiosis
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Phenotype is a function of genotype plus an
environmental component

 i—individualin[1 .. N]

* g —genotype of individual i

* p,— quantitative phenotype of individual i (single trait)
* e —environmental contribution to p,

15
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Phenotype is a function of genotype plus an
environmental component

 i—individualin[1 .. N]
* g —genotype of individual i

* p,— quantitative phenotype of individual i (single trait)

* e —environmental contribution to p,

pi=flg)ves  oi=r(pruy)

2 2 2 2
O,=0s+t0c+20,

g and e assumed or made independent yields

Ele]=0 )=

2 2 2
O,=0;1T0.
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Why two heritabilities?

e Broad-sense

— Describes the upper bound for phenotypic prediction
by an optimal arbitrary model

— Reveals complexity of molecular mechanism

* Narrow-sense

— Describes the upper bound for phenotypic prediction
by a linear model

— Describes relative resemblance and utility of family
disease history

— Efficienct genetic mapping studies

17
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Key caveats

* Heritability is a property of population (segregating
allele frequencies) and environment (noise
component)

* “Heritability” in practice may refer to either broad-
or narrow-sense (or an implicit assumption that they
are the same)

e Estimation is difficult (matching environments and
avoiding confounding)

18
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H? - Broad Sense heritability

* Fraction of phenotypic variance explained by genetic
component

2 2
Og Op~—O0e

2
Op Op

* Can estimate 0,° from identical twins or clones.

19
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Broad heritability of a trait is fraction of phenotypic
variance explained by genetic causes

(A) Genotypic variance (B) Environmental variance
aé=2£ o2=1.0

Distribution of

‘ phenotypes

{ when there is no
variation in the
environment;

| genotypic
 variance o7 = 2.0

Distribution of
when there is no
o variationin
genotype:
environmental
| variance ¢ = 1.0

/

(C} Phenotypic variance
ci=02+02=3.0

Distribution of phenotypes
when there is variation in both
‘genotype and environment;
_phenotypic variance o7 = 3.0
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© Jones & Bartlett Publishers. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
Source: Hartl, Daniel L. Essential Genetics: A Genomics Perspective. Jones & Bartlett

Publishers, P. 506, 2011.
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Additive model of phenotype

g; Is marker | for individual i with values {0,1}
Quantitative trait loci (QTLs) are discovered for each trait

fa(gi) = E /))jgij-l_ﬁo

JjEOTL
fa(pl) fa(pz) Children tend to midpoint of
E [fa (8,)] = + parents for additive traits as they
2 2 are expected to get an equal

number of loci from each parent
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Historical heritability example

RATE OF REGRESSION IN HEREDITARY STATURE.
Fig.(a)

HE,‘GHT The Deviates of the Children are to those of' DEVIATE
n their Mid-Parents as 2 to 3. m
inches B inches
79 | ﬂ o+ 4

5 i
. L ‘;«7 i +3
71 | When Mid-Parents are taller than mediocrity, ‘D
their Children tend to be shorter than they. /
P vz
70 H b ,
P H -
M o
68 N
= -1
67
> - -2
66 | & When Mid Parents are shorter than mediocrity,
C 6 their Children tend to be taller than they.
- -3
65 -
A -4

Figure is in the public domain.


http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
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h2 - Narrow Sense heritability

* Fraction of phenotypic variance explained by an additive
model of markers

* f_(g)is additive model of genotypic components in g,

* Difference between heritability explained by additive model
and general model is one source of “missing heritability” in

current studies

23
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h2 - Narrow Sense heritability

* Fraction of phenotypic variance explained by an additive
model of markers

* f_(g)is additive model of genotypic components in g,

* Difference between heritability explained by additive model
and general model is one source of “missing heritability” in

current studies

pi=fa(gi)+ei G§=G§_%§(pl_fa(g1))2

24
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Example trait heritabilities — h?

Morphological Traits
Human height ~ .8
Cattle Yearling Weight ~ .35

Fitness Traits
Drosophila life history ~ .2
Wild animal life history ~ .3

h? from Visscher et al. 2008
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Example trait heritabilities

Morphological traits
Drosophila — morphological traits (REF. 107) [l Only one environment reported
Daphnia — body size (REF. 108) [l Better environment
Altantic salmon — marine-stage weight (REF. 109) [[] Poorer environment

Atlantic salmon— freshwater-stage weight (REF. 109) ]

Birds — tarsus length (REF. 0) |

Birds — tarsus length (REF. TI0) |
Animal species in the wild — morphological (REF. ) i
Cattle — yearling weight (REF. 112)
Human — height Finland born 194757 (REF. 113)
Human — height Finland born <1929 (REF. 13) | ]

Fitness traits

Drosophila — life-history traits (REF. 107) :
Daphnia — clutch size (REF. 108)
Rainbow Trout — alevin survival (REF. T14)
Cattle — calving success (REF. 112)
Cattle — bull fertility (REF. T12)
Pigs — number of piglets born alive (REF. T15)
Animal species in the wild — life-history traits (REF. M)
-+

T T T T T T T T 1
0 01 02 03 04 05 06 07 08 0%

Heritability
Figure 1| Examples of estimates of heritablilitles of morphological and fitness tralts. Where possible, the
estimates of heritability were taken from Reviews. and are the mean across a number of studies. The examples show
that, on average, heritability estimates are larger for morphological traits than for fitness-related traits, and that
heritability tends to be larger in better environments when compared with poorer environments.

h? from Visscher et al. 2008

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Visscher, Peter M., William G. Hill, et al. "Heritability in the Genomics Era—Concepts
and Misconceptions." Nature Reviews Genetics 9, no. 4 (2008): 255-66.
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Today’s Narrative Arc

Usually, you are more like your relatives than random people on
the planet.

The heritability of a trait is the fraction of phenotypic variance that
can be explained by genotype

Computational models that predict phenotype from genotype are
key for understanding disease related genomic variants and the
most effective therapy for a disease (pharmacogenomics)

We will computationally predict quantitative phenotypes by
adding the contribution of individual loci (QTLs)

Typically our models can only predict a small fraction of
phenotypic variance — the so called “missing heritability” problem

27
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Can we predict phenotype in a haploid yeast
system?

Finding the sources of missing heritability in a
yeast Cross

Joshua S. Bloom"?, Ian M. Ehrenreich'?, Wesley T. Loo™?, Thuy-Lan Vo Lite"? & Leonid Kruglyak]‘d“r’

NATURE | VOL 494 | 14 FEBRUARY 2013

28
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Study heritability of 46 traits in ~1000 segregants

a
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+ | / Je ®sce0 :. .?. . .?- Ry Figure S1. The design of the segregant panel is shown in (A). (B) Curves illustrating statistical
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: ¢ ’ ¢ ~ 1 b v (X-axis) for a representative segregant; the orange (BY) and purple (RM) bars indicate parental
g haplotype calls, and the vertical black bars delineate chromosomes.
£
&

Genome Position

Bloom et al. 2013

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources of
Missing Heritability in a Yeast Cross." Nature 494, no. 7436 (2013): 234-7.
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Certain phenotypes are related
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Figure S2. Spearman correlation coefficients for all pairs of traits are shown. Numbers in table

cells indicate (100 * correlation coefficient).

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources of Missing Heritability in a
Yeast Cross." Nature 494, no. 7436 (2013): 234-7.
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5.

Today’s Narrative Arc

Usually, you are more like your relatives than random people on
the planet.

The heritability of a trait is the fraction of phenotypic variance that
can be explained by genotype

Computational models that predict phenotype from genotype are

key for understanding disease related genomic variants and the
most effective therapy for a disease (pharmacogenomics)

We will computationally predict quantitative phenotypes by
adding the contribution of individual loci (QTLs)

Typically our models can only predict a small fraction of
phenotypic variance — the so called “missing heritability” problem

31
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LOD scores to discover QTLs

N Plplo..u.,u,o
LOD=1()g10H (pl gl] luO lul )

i=1 P(pi|u,0)

* Use trait means conditioned on marker j in individual vs.
unconditioned mean for trait to test if markerjisa QTL

 Permute genotypes 1000 times and each time compute LOD scores
to estimate null LOD distribution

e Determine null LOD score that describes FDR = 0.05

e Use this threshold on unpermuted LOD scores to find QTLs for each
gene

 Fit linear model to discovered QTLs

* Repeat finding QTLs predicting residuals from existing model (3
times)

32
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1005 segregants detect more QTLs than 100 segregants

s 254

Lod

Bloom et al. 2013

Lod ©

12 3 4 586 7 88 10611 12 18 14 15 16
Genome position

Figure 3 | QTL detection for a complex trait. Lod score is plotted against the
genetic map. Red asterisks indicate statistically significant QTL. a, Lod score
plot with 1,005 segregants for growth in E6 berbamine. b, Lod score plot with
100 segregants for growth in E6 berbamine. The 15 significant QTL in a explain
78% of the narrow-sense heritability, compared with 21% for the 2 significant
QTL in b. Alternating shaded bands denote chromosome boundaries.

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources of
Missing Heritability in a Yeast Cross." Nature 494, no. 7436 (2013): 234-7.
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Phenotype prediction works well with
identified QTLs

-1

Observed phenotype

-2

-2 -1 0 1 2
Predicted phenotype

Figure 4  Prediction of segregant trait values from QTL phenotypes. The
observed phenotypic values for growth in lithium chloride are plotted against
the predicted phenotypic values based on a cross-validated additive model of 22
QTL. The additive QTL model explains 88% of the narrow-sense heritability.
The diagonal line represents (observed phenotype) = (predicted phenotype)
and is shown as a visual guide.

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources of
Missing Heritability in a Yeast Cross." Nature 494, no. 7436 (2013): 234-7.

Bloom et al. 2013
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35

Most identified QTLs have small effects

5-29 QTLs per trait
(median of 12),
reported at 5% FDR

25

20
1

Number of traits

Bloom et al. 2013

I T T T T 1
0.0 0.2 04 0.6 0.8 1.0

QTL effect size

Figure S3. A histogram of QTL effect sizes across all traits is plotted, showing that most
detected QTL have small effects. Effect size here is the absolute value of the standardized
difference in allelic means for each QTL. The blue line indicates a fit of a truncated exponential

distribution of effect sizes.

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources of
Missing Heritability in a Yeast Cross." Nature 494, no. 7436 (2013): 234-7.



http://dx.doi.org/10.1038/nature11867
http://dx.doi.org/10.1038/nature11867

Computational Analysis of QTLs 36

Identified QTLs explain most additive heritability

1.0
-
(@]
& 08~ o
QTLs explain 2 o °
72-100% of 2 o6- 5% il
narrow-sense ; 23,8 Bloom et al. 2013
. - % 0.4 P e, =
heritability 5 s
o
g dai
$ 0.2
£
OO T T I T
0.0 0.2 0.4 0.6 0.8 1.0

Narrow-sense heritability (h?)

Figure 2 | Most additive heritability is explained by detected QTL. a, The
total variance explained by detected QTL for each trait is plotted against the
narrow-sense heritability (h?). Error bars show * s.e. The diagonal line
represents (variance explained by detected QTL) = h” and is shown as a visual
guide. _ _ o _ .
Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources of
Missing Heritability in a Yeast Cross." Nature 494, no. 7436 (2013): 234-7.
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37

“Missing Heritability” exists with our linear model

Vertical gap

represents =
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1.0

Bloom et al. 2013

Figure 1 | Heritability for 46 yeast traits. The narrow-sense heritability (h?)
for each trait is plotted against the broad-sense heritability (H?). Error bars

show * s.e.in heritability estimates. The diagonal line represents h®> = H* and is
shown as a visual guide.

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources of
Missing Heritability in a Yeast Cross." Nature 494, no. 7436 (2013): 234-7.
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Today’s Narrative Arc

1. Usually, you are more like your relatives than random people on
the planet.

2. The heritability of a trait is the fraction of phenotypic variance that
can be explained by genotype

3. Computational models that predict phenotype from genotype are

key for understanding disease related genomic variants and the
most effective therapy for a disease (pharmacogenomics)

4. We will computationally predict quantitative phenotypes by
adding the contribution of individual loci (QTLs)

5. Typically our models can only predict a small fraction of
phenotypic variance — the so called “missing heritability”
problem
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What causes missing heritability?

Possible explanations (non-exclusive):
— Incorrect heritability estimates
— Non-chromosomal elements
— Rare variants
— Structural variants
— Many common variants of low effect

— Epistasis
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What causes missing heritability?

* Consider
— f(ab) =0
— f(aB) =f(Ab) =1
— f(AB)=0
A and B will not be detected as QTLs as individually they have no
effect on phenotype

e Assuming no environmental noise H2=1 and h2=0.
* Non-additive interactions can result from gene-gene interactions
(epistasis)
— Can be more than pairwise!
— Considering all combinations of markers is in general not tractable
because of multi-hypothesis limits
* Broad sense heritability includes additive genetic factors,

dominance effects, gene-gene interactions, gene-environment
interactions, non genomic inheritance
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Remaining sources of heritability

* Gap between o :
narrow- and broad-
sense heritability
implies genetic
Interactions

e For most traits, gaps || SRR /
p

not explained by M
found pairwise dl all ——

. . 1 T T
Interactions v

Non-additive genetic variance explained
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and 11. This QTL-QTL interaction explained 71% of the difference between

e X p I a I n e d by O n e broad-sense and narrow-sense heritability.
1 1 1 " Courtesy of Macmillan Publishers Limited. Used with
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Missing Heritability in a Yeast Cross." Nature 494, no. 7436 (2013): 234-7.
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Non-linear models reveal missing heritability from the
interaction of chromosomal and non-chromosomal elements
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& v b
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(linear) with interaction term

i ™ p (Mg
. 2 }same gap because |
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PEP7 R — chromosomal element
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Fraction of phenotypic variance explained chromosomal element with

interaction term
Courtesy of Edwards et al. Used with permission.
Source: Edwards, Matthew D., Anna Symbor-Nagrabska, et al. "Interactions Between Chromosomal
and Nonchromosomal Elements Reveal Missing Heritability." Proceedings of the National Academy of

Sciences 111, no. 21 (2014): 7719-22.
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Recent context

43

Problem: missing heritability for human diseases after

hundreds of GWAS studies

Table 1| Estimates of heritability and number of loci for several complex traits

Disease Number of loci Propartion of heritability explained
Age-related macular degeneration™ 5 50%

Crohn's disease™ 32 20%

Systemic lupus erythematosus™ 6 15%

Type 2 diabetes™ 18 6%

HDL cholesterol™ 7 5.2%

Height!s 40 5%

Early onset myocardial infarction™ 9 2.8%

Fasting glucose™ 4 1.5%

* Residual is after adjustment for age, gender, diabetes.

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Manolio, Teri A., Francis S. Collins, et al. "Finding the Missing Heritability of Complex

Diseases." Nature 461, no. 7265 (2009): 747-53.

“Found” h? from Manolio et al. 2009
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Discovering what is missing

e Use other data to determine relevance of
markers (SNPs in enhancers, non-sense
mutations, etc.) to reduce marker search space

* When relevant marker space is simplified can
consider non-linear interactions

* Consider non-chromosomal genetic elements

* Use complementary data to determine marker
interactions (protein-protein interaction data,

etc.)
* Your research goes here!
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