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PROFESSOR: I'm Ernst Frankel. I'll be teaching next two lectures. I'd like to encourage you to

contact me outside of class if you have any questions, if you want to meet. And also,

please, during class, ask questions. It's a somewhat impersonal setting with the

video cameras and the amphitheater, but hopefully we can overcome that.

This unit is going to focus on moving across scales in computational biology, looking

from computational issues that deal with the fundamentals of protein structure at the

atomic level to the level of protein-protein interactions between pairs of molecules,

protein DNA interactions and small molecules, and then ultimately into protein

network. So we've got a lot of ground to cover, but I think we'll be able do it. As

you've seen in the syllabus, the first couple of lectures are really a detailed look at

protein structure, molecular level analysis, and then we'll move into some of these

other levels of higher order, including protein DNA interactions and gene regulatory

networks.

I think may of you are probably familiar with this quote, that "nothing in biology

makes sense except in the light of evolution." And I'd like to offer a modified version

of that, which is little in biology make sense except in light of structure, protein

structure, DNA structure. We've, of course, seen this very early on in molecular

biology when the structure of DNA was solved, and immediately became clear why it

was the basis for heredity. But protein structures have been even more lasting

impact time and time again, many, many more events, which have really

revolutionized the understanding of particular biological problems.

So one example that was stunning at the time had to do with the most frequently

mutated protein in cancer. This is the p53 gene. It's mutated in about half of all

cancers, and what was observed early on-- this was in the days before genomic
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sequencing when it was actually very expensive and hard to identify mutations in

tumors.

So they focused on this particular gene, and they observed that the mutations

clustered. So this is the structure of the gene from the n-terminus-- the protein from

the n-terminus and the c-terminus, and the bars indicate the frequency of

mutations. And you can see that they're all clustered pretty much in the center of

this molecule.

Now, why is that? It was enigmatic until the structure was solved here at MIT by Carl

Pabo and his post-doc at the time, Nikola Pavletich, and they showed, actually, that

these correspond to critical domains. And in a second paper, they actually showed

why the mutations occur in those particular locations.

So if you look at the plot on the upper left, here's the protein sequence; above it, the

frequency of mutations; below it, the secondary structure elements. And you'll see

that mutations occur in regions that don't have any regular secondary structure and

can occur frequently in regions with secondary structure or not all in regions with

secondary structure. So the mere fact that there's a secondary structure element

does not define why there're mutations. But when the three-dimensional structure

was solved in the complex with DNA, over here on the right-- this is the protein

structure on the left, the DNA structure on the right, and in yellow are some of these

highly mutated residues.

It turns out that all of the frequently mutated residues are ones that occur at the

protein DNA interface. All right, so in a single picture, we now understand what was

an enigma for years and years and years. Why are the mutations so particularly

clustered in this protein in non obvious ways? Since that is the interface between

the protein and the DNA, these mutations upset the transcriptional regulation

through the action of p53.

So if we want to understand protein structure in order to understand protein

function, where are we going to get these structures from? So the statistics on how

proteins themselves-- I show here. This is from the-- I'll call it the PDB, the Protein
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Database. Its full name is the RCSB Protein Database, but it's usually just called the

PDB. And here, it shows that, at the time of this slide, around 80,000 structures

have been determined by x-ray crystallography.

The next most frequent method was NMR, Nuclear Magnetic Resonance, which

identified about 10,000 structures, and all the other techniques produce very, very

few structures, hundreds of structures rather than thousands. So how do these

techniques work? Well, they don't magically give you a structure. Right? They give

you information that you have to use computationally to derive the structure.

Here's a schematic of how structures are solved by x-ray crystallography. One has

to actually grow a crystal of the protein or the protein and other molecules that

you're interested in studying. These are not giant crystals like quarts. They're even

smaller than table salt. They're usually barely visible with the naked eye, and they're

very unstable.

They have to be kept in solution or, often, frozen, and you should a very high

powered x-ray beam through them. Now, most of the x-rays are-- what are they

going to do? They're going to pass right through because x-rays interact very

weakly with matter. But a few of the x-rays will be diffracted, and from that weak

diffraction pattern, you can actually deduce where the electrons were that scattered

the x-rays as they hit the crystal.

And so this is a picture, the lower right, of electron density cloud in light blue with the

protein structures snaking through it, and what you can calculate, after a lot of work,

from these crystallographic diffraction patterns is the location of the electron density.

And then there's a computational challenge to try to figure out the location of the

atoms that would have given rise to that electron density that then, when hit with x-

rays, would have given rise to the x-ray diffraction pattern. So it's actually an

iterative process where one arrives at the initial structure and then calculates, from

that structure, where the electrons would be, from the position of electrons where

the diffraction pattern would be when the x-rays hit it, and determines how well that

predicted diffraction pattern agrees with the actual diffraction pattern, and then
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continuously iterates.

And so this is obviously a highly computational problem because you not only have

to find positions that are maximally consistent with the observed diffraction pattern,

but also positions that are actually consistent with physics. So if we have a piece of

a molecule here, we can't just put our atoms anywhere. They need to be positioned

with well defined distances for the bonds, the bond angles, and so on. So it's a

highly coupled problem that we have to solve, and we'll look at some of the

techniques that underlie these approaches, although we'll look specifically at how to

solve x-ray crystal structures.

I mentioned the second most common technique is nuclear magnetic resonance,

and this is a technology that does not require the crystals, but requires a very high

concentration of soluble protein, which presents its own problems. And the

information that you get out of a nuclear magnetic resonance structure is not the

electron density locations, but it's actually a set of distances that tell you the relative

distance between two atoms, usually protons, in the structure, and that's what's

represented by these yellow lines here. And once again, we've got a hard

computational problem where we need to figure out a structure of the protein that's

consistent with all the physical forces and also puts particular protons at particular

distances from each other.

So we talk about solving crystal structures, solving NMR structures, because it is the

solution to a very, very complicated computational challenge. So these techniques

that we're going to look at, while not specifically for the solution of crystal and NMR

structures, underlie those technologies. What we're going to focus on is actually

perhaps an even more complicated problem, the de novo discovery of protein

structures. So if I start off with a sequence, can I actually tell you something

important and accurate about the structure?

Now, there's a nice summary in a book called Structural Bioinformatics that really

deals with a lot of the issues around computational biology is relates to structure,

that highlights many of the differences between the kinds of algorithms we've been
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looking at up until now in this course and the kinds of approaches that we need to

take in our understanding of protein structure. So the first and most fundamental

obvious thing is that we're dealing with three-dimensional structures, so we're

moving away from the simple linear representations of the data and dealing with

more complicated three-dimensional problems. And therefore, we encounter all

sorts of new problems.

We no longer a discrete search space. We have a continuous search space, and

we'll look at algorithms that try to reduce that continuous search space back down

to a discrete one to make it a simpler problem. But perhaps most fundamentally, the

difference is that now we have to bring in a lot of physical knowledge to underlie our

algorithms. It's not enough to solve this as a complete abstraction from the physics,

but we actually have to deal with the physics in the heart of the algorithms. And we'll

look at the issues highlighted in red in the rest of this talk.

Another thing that's going to emerge is that it would be nice if there was a simple

mapping of protein sequence to structures, and if that were the case, you'd imagine

that two proteins that are very different in sequence would have different structures.

But in fact, that's not the case. You can have two proteins that have almost no

sequence similarity at all but adopt the same three-dimensional structure, so clearly,

it's an extremely complicated problem made more complicated by the fact that we

don't know all the structures. It's not like we're selecting from a discrete set of

known structures to figure out what our new molecule is. We have, in potential,

infinite number of confirmations and protein chains we need to deal with.

OK, so I hope that you've had a chance to look at the material that I've posted

online for review of protein structure. If you haven't, please do so. It'll be very helpful

in understanding the next few lectures, and I'll assume that you're familiar with the

basic elements, protein structure, what alpha helices are, what beta sheets are,

primary structure, secondary structure, and so on.

And I'll also encourage you to become familiar with amino acids. It's very hard to

understand anything in protein structure without having some knowledge of what
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the amino acids are. The textbook has a nice figure that summarizes the many

overlapping ways to describe the features in amino acids, so please familiarize

yourself with that.

So these are resources that we posted online. Also, the Protein Databank, the

RCSB, has fantastic resources online for beginning to understand protein structure,

so I encourage you to look at their website. In particular, in their website, they have

tools that you can download to visualize protein structures, and that's going to be a

critical component of understanding these algorithms, to actually understand what

these structures look like.

I've highlighted, too, that I find particularly easy to use PyMOL and Swiss PDB

Viewer. You can not only look at structures with these techniques, you can actually

modify them. You can do homology modeling.

So before we get into algorithms for understanding protein structure, we need to

understand how protein structures are represented. I've already mentioned that

there are these repeating units that I'd like you already know about-- alpha helices,

beta sheets. We won't go into those in any detail. But the two more quantitative

ways of describing protein structure have to do with a three-dimensional

coordinates, the XYZ coordinates of every atom, and internal coordinates, and we'll

go through those a little bit of detail.

So again, this PDB website has a lot of great resources for understanding what

these coordinates look like. They have a good description of what's called a PDB

file, and those PDB files look like this at the outset. They have what is now called

metadata, but at the time was just information about how the protein structure was

solved. So it'll tell you what organism the protein comes from, where it was actually

synthesized if it wasn't purified from that organism, but if it was made recombinantly,

details like that, details about how the crystal structure was determined. The

sequence-- most of this won't concern us, but what will concern us is this bottom

section shown here in more detail.

So let's just look at what each of these lines represents. The lines that contain
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information about the atomic coordinates all begin with the word ATOM, and then

there's a index number that just is referenced for each line of the file, tells you what

kind of atom it is, what chain in the protein it is, and the residue number. So here,

it's starting with residue 100. The sequence here can be arbitrary and may not

relate to the sequence of the protein as it appears in SWISS-PROT or Gen Bank.

And then the next three columns are the ones that are most important to us, so

these are the XYZ coordinates of the atom. So to identify the position of any

molecule in three-dimensional space, obviously you need three coordinates, and so

those are what those three coordinates are. And they're followed by these two other

numbers, which actually are very interesting numbers because they tell us

something about how certain we are that the molecule is really-- the atom is really

at that position in the crystal structure. So the first of these is the occupancy.

In a crystal structure, we're actually getting the information about thousands and

thousands of molecules that are in the repeating units of the crystal, and it's

possible that there could be some variation in the structure between one unit of the

crystal and the next. So you could have a side chain that, in one crystal, is over here

and in the next crystal-- a repeating unit of the crystals over there. If there are

discrete confirmations, then you imagine that the signal will be reduced, and you'll

actually get some superposition of all the possible confirmations.

So number one here means that there seems to be one predominate confirmation.

But if there is more than one, and their discrete-- if they're continuous, it'll just look

like noise. It'll be hard to determine the coordinates. But if they're discrete positions,

then you might find, for example, an occupancy of 0.5 and then another line with the

other position with an occupancy of 0.5. So that's when there's discrete locations

where these atoms are located.

The B factor's called the thermal factor, and it tells you how much thermal motion

there was in the crystal at that position. Now, what does that mean? If we think

about a crystal structure, there'll be some parts of it that are rock solid. In the

center, it's highly constrained. The dense core of the protein, not too much is going
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to be changing.

But on the surface of the protein, there can be residues that are highly flexible. And

so as those are being knocked around in the crystal, they are scattering the x-rays

in slightly different ways. But they're not in discrete confirmations, so we're not going

to see multiple independent positions. We'll just see some average positions.

And that kind of noise can be accounted for with these B factors, where high

numbers represent highly mobile parts of the structure, and low numbers represent

very stable ones. A very low number here would be, say, a 20. These numbers of

80-- typically, things like that occur at the ends of molecules where there is a lot of

structural flexibility.

So we have this one way of describing the structure of a protein where we specify

the XYZ coordinates of every one of these atoms, and we'd have these other two

parameters to represent thermal motion and static disorder. Now, are those

coordinates uniquely defined? If I have this structure, is there exactly one way to

write down the XYZ coordinates?

Hands? How many people say yes? How many people say no? Why not?

AUDIENCE: You can rotate it.

PROFESSOR: You can rotate it. You set the origin. Right? So there's no unique way of defining it,

and that'll come up again later.

OK, now, this is a very precise way of describing the three-dimensional coordinates

in protein, but it's not a very concise way of representing it. Now, why is that? Well,

as the static model represents, there are certain parts of protein structures that are

really not going to change very much. The lengths of the bonds change very little in

protein structures. The angles, the tetrahedrally coordinated carbon, doesn't

suddenly become flat, planar.

These things happen very-- there may be very small deformations. So if I had to

specify the XYZ coordinates of this carbon, I really don't have too many degrees of
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freedom for where the other carbon can be. It has to lie in a sphere at a certain

distance. So instead of representing XYZ coordinates of every atom, I can use

internal coordinates.

So here in this slide, we have amino acids-- the amino nitrogen, the carbonyl

carbon. So this is a single amino acid. Here's the peptide bond that goes to the next

one. And as this diagram indicates, the bond between the carbonyl carbon of one

amino acid and the amide nitrogen of the next one is planar, so that angle isn't even

rotating. So that's one degree of freedom that we've completely removed.

The angles that rotate in the backbone or called phi and psi; phi over here, and psi

over here. So those are two degrees of freedom that determine how this amino acid

is-- the confirmation of this amino acid. So instead of specifying all the coordinates, I

can specify the backbone simply by giving two numbers to every amino acid, the phi

and psi angles, with the assumption that the omega angle, this peptide backbone,

remains constant. And similarly for the side chains, and we'll go into this in more

detail later, we can then give the coordinates, the rotation, of rotatable bonds in the

side chain and not specify every atom as we go out.

OK, so we've got these two different ways of representing protein structure, and

we'll see that they're both used. Any questions on this? Great. OK, so if we're

looking at protein structures, one question we want to ask is how do we compare

two protein structures to each other?

So I already mentioned that proteins can have similar structure, whether or not they

are highly similar in sequence. So if I have two proteins that are highly homologous,

that do have a high level of sequence similarity-- for example, these two orthologs,

this one from cow and this one from rat-- you can see, at a distance, they both have

very similar structures. They also have 74% sequence similarity, so that's not

surprising. But you can get proteins that have very low sequence similarity. They're

still evolutionary related, like these orthologs, two different species that have the

same protein, or paralogs, a single species that have two similar copies, but non

identical copies, in the same protein that maintain the same structure when they
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only have about 20% to 30% sequence similarity.

And you can get even more distant relationships. So here are two proteins, both in

human, evolutionarily related, but only 4% sequence identity. And yet at a distance,

they look almost identical. And those are evolutionary related proteins, but we can

also have things that are called analogs, which have no evolutionary relationship, no

obvious sequence similarity, and yet adopt almost identical protein structures. So

this adds to the complexity of the biological problems that we're going to try to solve.

All right, so how do I quantitatively compare two protein structures? So the common

measurement is something called RMSD, Root Mean Square Deviation, and here, I

have a set of structures that were solved by NMR. And you can see that there's a

core of the structure that's well determined and then there are pieces of the

structure that are poorly determined. There weren't enough constraints to define

them.

And these proteins have all been aligned, so the XYZ coordinates have been

rotated and translated to give maximal agreement. And what's the agreement

measure? It's this Root Mean Square Deviation.

So I need to define pairs of atoms in my two structures. If it's, in this case, the same

structure, that's really easy. Every atom has a match in this structure that was

solved with the same molecule.

But if we're dealing with two homologous proteins, then that becomes a little bit

more tricky. We need to define which amino acids are going to match up. We can

also define whether we care about changes in the side chains, or whether we only

care about changes in the backbone, whether we're going to worry about whether

the protons in the right places or not. And you'll see that these alignments can be

done with either only heavy chain, heavy atoms, meaning excluding the hydrogens,

or only main chain atoms, meaning excluding the side chains completely.

But once we've defined the pairs of corresponding atoms, then we're going to take

the difference in the distance squared, sum of the squares of the distances between
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the corresponding atoms and their x-coordinate, their y-coordinate, and they're z-

coordinate. Take the square root of that sum, and that's going to give us the Root

Mean Square Deviation. And of course, we have to minimize that Root Mean

Square Deviation with these rigid body rotations to account for the fact that I could

have my PDB file with the origin of this atom. Or I could have my PDB file with the

origin of that atom, and so on.

OK. Any questions so far? Yes.

AUDIENCE: Do we consider every single atom in the molecule?

PROFESSOR: So we have a choice. The question was do we consider every single atom in the

molecule? We don't have to do, and it depends, really, on the problem that we're

trying to solve. So if we're looking for whether two proteins have the same fold, we

might not care about the side chains. We might restrict ourselves to main chain

atoms.

But if we're trying to decide whether two crystal structures are in good agreement

with each other, or say, as we'll see a few minutes, we're going to try to predict the

structure protein, and we have the experimentally determined structure of the same

protein, and we want to decide whether those two agree, in that case, we might

actually want to make sure that every single atom is in the right position. So it'll

depend on the question that we're trying to answer. Good question.

Any other questions? OK. All right, so so far, I've shown a lot of static pictures of

molecules. I do want to stress that molecules actually move around a lot, so I'll just

show a little movie here.

[VIDEO PLAYBACK]

[END VIDEO PLAYBACK]

PROFESSOR: OK, so that was, in part, an excuse to play a little New Age music in class, but more

fundamentally, it was to remind you that, despite the fact that we're going to show

you a lot of static pictures of proteins, they're actually extremely dynamic. And they
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have well defined structures, but they may have more than one well defined

structure, especially those molecules that are doing work. They're actually moving

things along. They have multiple structures. And so when we consider the protein

structure, it's an approximation, and we're always going to mean the protein

structures, not singular one.

OK, so what determines the protein structure? Well, I've told you it's physics.

Fundamentally, it's a physical problem, so the optimal protein structure has to be an

energetic minimum. There has to be no net force acting on the protein.

The force is negative derivative of the potential energy, so that derivative has to be

0. So we have to have a minimum of protein structure. Now, that doesn't mean that

there's exactly one minimum.

Those proteins that had multiple confirmations in that movie obviously had multiple

minima that they could adopt depending on other circumstances, but there has to

be at least a local minimum. So if we knew this U, this potential energy function, and

we could take the derivative of it, we could identify the protein structure or the

protein structures by simply identifying the minima in that potential energy function.

Now, would that life were so simple, right?

But we will see that there are ways of parameterizing the U and using it to optimize

the structure so it finds this, at least local, minimum. And we're going to look

primarily at two different ways of describing the potential energy function. One of

them, we're going to look at the problem like a physicist one, and the other way,

we're going to look at it as a statistician would.

So the physicist wants to describe, as you might imagine, the physical forces that

underlie the protein structure, and so as much as possible, we're going to try to

write down equations that represent those forces. Now, we're not always going to

be able to do that because a lot of forces involved are quantum mechanical. The

mere fact the two solid objects don't pass through each other is because of

exclusion principles that deal with quantum mechanics.
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We're not going to write down quantum mechanical equations for every atom in our

protein structure, but we will write down equations that approximate those. And

wherever possible, we're going to try to tie the terms in our equations into

something identifiable in physics, and a very good example of this approach is the

CHARMM program. And these approaches actually were the ones that won the

Nobel Prize in chemistry this past year.

At the other end of the spectrum are the statistical approaches. Here, we don't

really care what the underlying physical properties are. We want equations that

capture what we see in nature.

Now, often, these two approaches will align very well. There'll be some

approximations that the physicist makes to capture a fundamental physical force.

That's simply the best way to describe what you see nature, and so those two terms

may look indistinguishable in the CHARMM version or my favorite statistical

approach, which is Rosetta.

So we'll see that some terms in these functions agree between CHARMM and

Rosetta. Well, there'll be places where they fundamentally disagree on how to

describe the molecular potential energy function because one is trying to describe

the physical forces and the other one is trying to describe the statistical ones. Do we

have any native speakers of German in the audience?

AUDIENCE: I'm a speaker.

PROFESSOR: You want to read the joke for us?

AUDIENCE: Yeah. Institute for Quantum Physics, and it says "You can find yourself here or

here."

PROFESSOR: OK.

AUDIENCE: [LAUGHTER]

PROFESSOR: All right, so for the video, it's the Institute for Quantum Mechanics. And you go to a

map at MIT, and it'll say, you find, "You are here." Right? But in the Institute for
13



Quantum Mechanics, it says "You're either here or here."

So that's the physicist approach. We really do have to think about those quantum

mechanical features, whereas on the right-hand side is the statisticians approach. It

says "Data don't make any sense. We'll have to resort to statistics." OK? So the

statistician can get pretty far without understanding the underlying physical forces.

All right, so let's look at this physicist approach first, so we're going to break down

the potential energy function into bonded terms and non-bonded terms. So the

bonded terms, as they sound, are going to be atoms that are close to each other in

the bonded structures, so certainly these two atoms, because they're connected by

a single bond, are going to be bonded terms. But we'll see groups of three or four

atoms near each other will also be bonded terms. And the non-bonded terms will be

when I have another molecule that comes close, but isn't directly connected. What

are the physical forces between these two ?

So these bonded terms then first break down into a lot of sub terms. I'll show you

the functional forms here. We'll just look at a few of them in detail and then give you

a sense of what the other ones are.

So this first one is the bonded term that describes, actually, the distance between

two bonded atoms. Now, again, this is fundamentally quantum mechanical property,

but it would be too computationally expensive to describe the quantum mechanics

and not really necessary because you can do pretty well by just describing this as a

stiff spring. So that's what this quadratic form of the equation represents.

So we simply define b naught here as the equilibrium position between these two

atoms, particular types. There would be two tetrahedral coordinated carbons, and

that would be determined by looking at a lot of very, very high resolution structures

in small molecule crystals so we know what the typical distance for this bond is. We

get that as a parameter. There would be a big file in the CHARMM program that

lists all those parameters for every one of these bonded terms, and then if there's a

small deviation from that, because the molecules stretched a bit in your refinement

process, there would be a penalty to pull it back in just like a spring pulls it back in.
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Now, it turns out that when you go this route, you have to actually come up with a lot

of equations to maintain the geometry because, again, we're going to have to not

only worry about these distance bonds, but we need to worry about angles. So

we've got the angle between this bond and this bond. What keeps that in place?

So we need to add another term that's a second term here to make the angle

between these fixed, and then we have to deal with what are called dihedral angles

to make sure that these four atoms lie in the allowed geometry. And so each one of

these terms accounts for something like that. This last term over here makes sure

that the phi and psi angles are consistent with what we see in quantum mechanics

as corrected for any deviations that we see in these small molecules so a lot of

terms with a lot of parameters they're trying to capture the best description of what

we observe in each one is motivated by the fact that there is some quantum

mechanical principle underlying it. So-- yes?

AUDIENCE: Why is the [INAUDIBLE]?

PROFESSOR: I actually don't know the answer to that. But there's a reference there that I'm sure

will give you the answer. OK, now what about these non-bonded terms? So non-

bonded terms of the set are molecules that are distant from each other in the

structure of the protein, but close to each other in three-dimensional space. And

there are two fundamental forces here.

The first one is called the Leonard Jones potential, and the second one of the

electrostatic one. And the Leonard Jones potential itself has these two terms. One is

an R6 term, a negative r to the 6th dependency. The other one is positive nr to the

12th.

The negative r to the 6th is an attractive potential. That's why it's negative, and it's

because of small induced dipoles that occur in the electron clouds of each of these

atoms that pull the molecules together. And the 1 over r to the 6th dependency has

to do with the physics of two dipoles interacting.
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The r over 12 term is an approximation to a quantum mechanical force. So the

reason the two molecules don't pass through each other, as we said already, is

because quantum mechanical forces. That would be very expensive to compute, so

we come up with a term that's easy to compute. And of course, an r 12 term is

simply the square of an r to the 6th term, so if you already computed 1 over r to the

6th between two atoms, you just square that, and you get 1 over r to the 12th. So

it's very computationally efficient, and you adjust the parameters, these r mins, so

that it works out so that these things agree reasonably well with the crystal

structures. And these are crystal structures of small molecules that we know in great

detail.

And then the electrostatics is what you might expect for electrostatics. It's got a

potential that varies as 1 over the distance, and as the product of those charges,

these can be full charges or they can be partial charges. And there's a term here,

this epsilon, which is the dielectric constant, and that represents the fact that, in

vacuum, there'd be much greater force pulling two oppositely charged molecules

together than in water because the water's going to shield. And so these

electrostatic terms, this dihedral dielectric potential term, can vary from one, which

is vacuum, to, say, 80 for water. And setting that is a bit of an art.

OK, so what do these potentials look like? Those are shown here. This is the, in

dark lines, the sum of the van der Waals potential. It consists of that attractive term,

which has the r over 6 dependency, and the repulsive term with the r over 12. And

why does it go up so high at short distances?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Right, because you can't have molecules that overlap. You'll see that there's a

minimum, so there's an optimal distance barring any other forces between two

atoms. So that's roughly what these hard sphere distances represent in the scale

models. And then the electrostatic potential also, obviously, has attractive term, but

it's going to blow up as you get to small values, increasingly favorable.

And so the net sum of those two is shown here, the combination of van der Waals
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and electrostatics. It, again, has a strong minimum but becomes highly positive as

you get to close distances. OK, any questions on these forces? Yes?

AUDIENCE: Do the van der Waals equal the Leonard Jones potential? Or is that something

else?

PROFESSOR: Yeah, typically, those two terms are used interchangeably. Yeah. Other questions?

OK.

All right, so that's how the physicist would describe the potential energy function.

Rosetta, as I told you, is an example of the statistical approach. It rejects all this

sharp definition of trying to compute exactly the right distance between two atoms

by having a stiff spring between them and says let's just fix a lot of these angles.

So we're going to fix the distance between two atoms. There's no point in having

them vary by tiny, tiny fractions in the bond length. We're going to fix a tetrahedral

coordination of our tetrahedral carbons. We're not going to let them deform

because that never would happen in reality, and so we're going to focus our search

over the space entirely over the rotatable bonds.

So remember, how many rotatable bonds did we have in the backbone? We had

two, right? We had the phi and the psi angles, and then the side chains then will

have rotatable bonds over the side chains.

So in this example, this is a cysteine. Here's the backbone. Here's the sulfur. And

we have exactly one rotatable bond of interest because we don't really care where

the hydrogen is located.

So we've got this chi 1 angle. If there were more atoms out here, this would be

called chi 2 and chi 3. And these can rotate, but they don't rotate freely. We don't

observe, in crystal structures, every possible rotation of these angles, and that's

what this plot on the left represents.

For this side chain, there's a chi 1, a chi 2, and a chi 3, and the dark regions

represent the observed confirmations over many, many crystal structures. And you
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can see it's highly non uniform. Now why is that?

I see people with their hands trying to figure it out in the back. So why is that?

Figure that's what you guys are doing. If not, it's very interesting sign language.

So if we look down one of these tetrahedral carbon-carbon bonds, we have

apparently a free rotation. But in fact, some these confirmations, we're going to

have a lot of steric clashes between the atoms on one carbon and the atoms on the

other, and so this is not a favorable confirmation. The favorable confirmation is

offset, and that propagates throughout all the chains in the protein.

So there'll be certain angles that are highly preferred, and other ones that are not.

These highly preferred angles are called rotamers, and so we'll use the term a lot. It

stands for rotational isomers.

And so now, we've turned our continuous problem of figuring out what the optimal

angle is for this chi 1 rotation into a discrete problem where maybe there are only

two or three possible options for that rotation. And so now, we can decide is this

better than this one or this one? Questions on rotamers or any of this? Excellent.

OK, so how do we determine-- we've decided then we're going to describe the

protein entirely by these internal coordinates-- the phi, the psi, the backbone, the chi

angles of the side chain. We still need a potential energy function, right? That hasn't

told us how to find the optimal settings, and we're going to try to avoid the approach

of CHARMM, where we actually look at quantum mechanics to decide what all the

terms are. So how do they actually go about doing this?

Well, they take a number of high resolution crystal structures, and they characterize

certain properties in those crystal structures. For example, they might characterize

how often a certain aliphatic carbon-- how often aliphatic carbons are near amide

nitrogens, and they might measure the distance-- they do measure the distance

between these amide nitrogens and aliphatic carbons across all the crystal

structures and determine how often those distances occur. And you can actually

turn those observations, then, into a potential energy function by simply using
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Boltzmann's equation. So we can figure out how frequently we get certain distances

on the x-axis is distance, on the y-axis is frequency, number of entries in the crystal

structure, and then by Boltzmann's Law, we can compute the density of states over

some reference, which is actually very hard to define. And you can look at some of

the references referred to in the slides to figure out how currently that's defined, but

we have to find some arbitrary reference state to figure out the probability of being

any one of these states is going to be a function, a logarithmic function, of the

frequency of those states.

All right, so we've got an energy term that's determined solely by the observations

of distances, that doesn't say I know that this one's charge and this one isn't. It just

says here's an oxygen attached to a carbon with double bonds. Here's a carbon

that's not. How often are they at any particular distance? And we go through lots

and lots of other properties, and we'll go into detail now to what those other terms

are to look through high resolution crystal structures, see what certain properties

are, turn those into potential energy functions that we can then use to identify the

optimum rotations for the side chain and the backbone.

Oh, and I should also point out that when we do this, we'll have different terms for

different things. We'll have a term for distances between different kinds of atoms.

We'll have terms for some of these other pieces of potential energy that we'll

describe in subsequent slides, and we're going to need to decide how to weight all

of those, all those independent terms, to get them to give us reasonable protein

structures when we're done. And that, once again, is a curve fitting exercise, finding

the numbers that best fit the data without any guiding physical principle underneath

it.

So you'll be using PyRosetta. And in PyRosetta, you'll see the terms on the board

for the potential energy functions, the different features of the potential energy

function, and I'll step you through a few of these just so you know what you're using.

There'll also be files in PyRosetta installation that will give you the relative weights

for each of these terms.
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OK, so these first are the van der Waals, and here, the shape of the curve looks just

like we saw before. It has to, in some sense because they're trying to solve the

same physical problem, but the motivation is very different. There's no attempt to

decide that it should be a 1 over r to the 6th because of dipole-dipole interactions.

And simply, how do I find the function that accurately represents what I see in the

database? So again, computed, this is the fa attractive and the fa repulsive, and

those are determined based on the statistics of what's observed in the crystal

structures.

This one, the hbond, breaks down into backbone and side chain, long range and

short range. And the goal of the hbonds-- so hydrogen bonds are one of the

principal determinants of protein structure, and you'll see that in the reading

materials that are posted online. And one of the critical things about a hydrogen

bond is that it needs to be nearly planar. So the line between-- the angle between

this atom, which has the hydrogen attached, and this one, which is the free electron

pair, has to be as close to linear as possible. And the more it deviates from linear,

the weaker the hydrogen bond will be.

And so this hydrogen bonding potential has terms that describe the distance

between the atoms that are donating and accepting the hydrogen as well as the

angle between them, and it's been parameterized to represent, separately, things

that are far from each other, close to each other, things that are side chain, or main

chain. And here's where it's really the statistician against the physicist. Why divide

up side chain and main chain? There's no physical principle that drives you to do

that. It's simply because that's what gives the best fit to the data, so the statistician

is not afraid to add terms that make their models better fit reality, even if they don't

represent any fundamental physical principle.

And we'll see it gets even more dramatic with some these other terms. So this is the

Ramachandran plot, which you'll also see in your reading. It represents the

observed frequencies of phi and the psi angles. And as you know that there are only

a couple positions on this phi and psi plot that are frequently observed, representing

the different regular secondary structures primarily, alpha helix and beta sheet is
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indicated.

And rather than trying to capture the fact that protein should form alpha helices by

having really good forces all around, they simply prefer angles that are observed in

the Ramachandran plot. So we're going to give a potential energy function that's

going to penalize you if your phi and psi ends up over here, and reward you if your

phi and psi ends up in one of these positions. So from the physicist, this is cheating,

and for the statistician, it makes perfect sense. Shouldn't laugh at that.

OK, and this same will be true for the row numbers. So we said that, for the side

chains, there are certain angles that we prefer over others because that's what we

observe in the database. Again, we're not going to try to get them by making sure

that there's repulsion between these two atoms when they're eclipsed. We're going

to get there simply by saying the potential energy is lower when you're in one of

these staggered confirmations than you're one of the eclipse confirmations.

OK, now, the place where the difference between the statistician and the physicist is

most dramatic comes when we look at the salvation terms. So a lot of what goes on

in protein structure-- determines protein structure, I should say, is the interaction of

the protein with water. It's bathed in a bath of 55 molar water molecules, highly

polar. They normally are hydrogen bonding with each other. When the protein sits in

there, the protein has to start hydrogen bonding with them.

And where do we find hydrophobic residues in a protein structure, with your hands?

Outside or inside? Inside, right? So the hydrophobic residue's all going to be buried

inside. Why is that?

Well, it's actually really, really hard to describe in terms of fundamental physical

principles. In fact, it's really hard to describe the structure of water by fundamental

physical principles. Simulations that try to get water to freeze were only successful a

few years ago. So we've tried to simulate water using basic physical principles. It's

very hard to get it to form ice when you lower the temperature, so it's going to be

even harder, then, to represent how a complicated protein structure immersed in

the water actually interacts with those water molecules.
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So you've got all these water molecules interacting with polar residues or non-polar

residues. The physicist really struggles to represent those. And just to show you

why that is, let me show you, again, a little movie. Unfortunately, no new age music

with this one. I apologize.

So what's shown here is a sphere immersed in a bunch of water molecules. The red

is the oxygen. The little white parts are the hydrogens. You can see them wiggling

around.

And what's the fundamental feature that you observe? All right, they're forming

almost a cage around this hydrophobic molecule. Why is that? Yeah?

AUDIENCE: It's hard for them to interact with a non-polar residue.

PROFESSOR: Right, so it's hard for them to interact with a non-polar residue. So the water

molecules want to minimize their potential energy. They're going to do that by

forming hydrogen bonds with something. In bulk solvent, they form it with other

water molecules.

Here, they can't form any hydrogen bonds with a sphere, so they have to dance to

this complicated dance to try to form hydrogen bonds with each other with this thing

stuck in middle of them. And this is, at its heart, the fundamental driving force

between the hydrophobic effect, that which causes the hydrophobic residues to be

buried inside of the protein. Very, very hard, as I said, to simulate using

fundamental physical forces.

So what does the statistician do? The statistician has a mixture of experimental

observation and statistics at their benefit, so we can measure how hydrophobic any

molecule is. We can take carbons and drop them to non-polar solvents, into polar

solvents, and determine what fraction of time a molecule will spend in a polar

environment versus a non-polar environment, and from that, get a free energy for

the transfer of any atom from a hydrophobic environment to a hydrophilic

environment. That can give us is delta G Ref, shown over here.
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OK, now, in a protein, that molecule is not fully solvent exposed even when it's on

the surface, because water molecules trying to come at it from this direction can't

get to it, from this direction can't get to it. So the transfer energy for this carbon to

go from fully solvent exposed to buried is different from the isolated carbon. And so

the statistician says, OK, I'll come up with a function to describe that. I will describe

what else is near this atom in the rest of the protein structure.

That's what the term on the right does. It's a sum over all other neighboring atoms

and describes the volume of the neighboring group. Is the thing next to it really big

or really small? Usually not described, necessarily, at the level of atoms. It might be

side chains depending on which program is doing it.

But I have some measure of the volume of the neighbors. If that volume is really

large, then this thing is already in a hydrophobic environment even when it's taking

water because it's surrounded by bulky things. If the neighbors are small, then it's a

more hydrophilic environment when it's taking in water, and that's going to modulate

this free energy. Is this function clear?

OK, so by combining this observation from small molecule transfer experiments and

these observations based on the structure of the protein, we can get an

approximation for the hydrophobic effect. How expensive is it to have this piece of

the protein in solvent versus in the hydrophobic core? And again, we never had to

do any quantum mechanical calculations.

We never had to actually explicitly compute the interaction of this molecule with

solvent. We don't need any water in the structure. It's simply the geometry of the

protein that's going to give us a good approximation to the energy function.

All right, so you can look through all the details of these online in the Rosetta

documentation that we provided to get a better sense of what all these functions

are, but you can see there are a lot of terms. It's increasingly incremental. You find

something wrong with your models. You add a term to try to account for that. Again,

not driven necessarily by the physical forces.
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OK, so what have we seen so far? We've seen the motivation for this unit, to begin

with protein structures, that the protein structure really helps us understand the

biological molecules that we're looking at. These structures are going to influence

our understanding of all biology, so we need to be good at predicting these protein

structures or solving them when we have experimental data. The computational

methods that we're going to use-- we're going to focus on solving protein structures

de novo, predicting them, but those same techniques are going to underlie the

methods that are used to solve x-ray crystallography in an MR.

And fundamentally then, we have these two approaches to describing the potential

energy. That's the statistician and the physicist's approach. And remember, the key

simplifications of the statistician are that we used a fixed geometry.

We're not trying to figure out the XYZ coordinates of every atom. We're simply trying

to figure out the bond angles. We're going to use rotamers, so we're going to turn

our continuous choices often into discrete ones. And we're going to derive statistical

potentials to present the potential energy, which may or may not have a clear

physical basis.

All right, so let's start with a little thought experiment as we try to get into some of

these prediction algorithms. So I have a sequence. It's about, I don't know, 100

amino acids long, and here are two protein structures. One is predominantly alpha

helical. One is predominantly beta sheet.

How could I tell-- this is not a rhetorical question. I want you to think for second.

How could I tell whether the sequence prefers the structure on the top or the

structure on the bottom? So we have, actually, a lot of the tools in place. Yes, in the

back.

AUDIENCE: Can you, based on previously known sequences, know which sequence is

predominant in which [INAUDIBLE]?

PROFESSOR: OK, so the answer was we could look at previously known sequences. We can look

for homology, and that's actually going to be a very powerful tool. So if there is a
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homologue in the database that is closely related to this protein, and it has a known

structure, then problem solved. What if there isn't? What's my next step? Yes?

AUDIENCE: What if you start with a description of the secondary structure, say the helices and

the sheet, and you counted how often a particular amino acid showed up in each of

those structures? Could you then compute maybe a likelihood across a stretch of

amino acids?

PROFESSOR: Great. So that answer was what if I looked at these alpha helices and beta sheets

and computed how often certain amino acids occur in alpha helices versus beta

sheets, and then I looked in my protein structure and checked whether I have the

right amino acids that are more favorable than alpha helices or beta sheets. And

we'll see that's an approach that's been used successfully. That's secondary

structure prediction. OK, other ideas. Yep?

AUDIENCE: So if you have the position of the 3D structure, you can feed your sequence through

the structure and then put it through your energy function, see which one is the

lower [INAUDIBLE].

PROFESSOR: Excellent. So another thing I can do is, if I have these two structures, I have their

precise three-dimensional structures, I could try to put my sequence onto that

structure, actually put the right side chains for my sequence into that backbone

confirmation. And then what would I do? I would actually measure the potential

energy of the protein in top structure and the potential energy of the protein in the

bottom structure.

If the potential energy is higher, is that the favorable structure or the unfavorable

structure? Favorable? Unfavorable? Right, it's the unfavorable. So I want the lower

free energy structure.

OK, so let's think about-- that's correct, and that's where we're headed. But what

are going to be some of the complexities of that approach? So first of all, what

about these side chains? I have to now take a backbone structure that had some

other amino acid sequence on it, and I have to put these new side chains on. Right?
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If I put those on in the wrong way-- let's say, this is the true one-- let's say one of

these is the true structure. Let's begin with a simplification. All right, so let's say your

fiendish labmate has actually solved the structure of your protein, but refuses tell

you what the answer is.

AUDIENCE: [LAUGHTER]

PROFESSOR: And she actually has solved two structures, neither one of which she's going to give

you the sequence to. But she's giving you the coordinates for both of them. They're

the same length.

And so she asks you, ha, you took 791. You can figure this out. Tell me whether

that your sequence is actually in this structure or that structure. She says one of

them is exactly right. You just don't know which one.

OK, so she gives you the backbone coordinates, so you go. You put your amino

acid sequence, say, with Swiss [? PDB. ?] You add to the backbone all the right side

chains. But now, you have to make a bunch of decisions for these side chain

confirmations. If you make the wrong decision, what happens?

Well, you stick this atom close to where some other atom is. Now, you've got an

optimization problem, right? You believe that one of these backbone coordinates is

correct, but you've got a very highly coupled optimization problem.

You need to figure out the right rotations for every single side chain on this protein,

and you can't do it one by one. You can't take a greedy approach because if I put

this side chain here, and I put this side chain here, they collide, but if this was wrong

and supposed to be over there, then maybe this is the right conformation. So I have

a coupled problem, so it turns out to be computationally expensive thing to

compute. So we're going to look at what to do if we know backbone confirmation,

but we don't know the side chain confirmation. We can try to solve that optimization

problem, and you'll actually do that in your problem set.

Now, what if the backbone confirmation isn't exactly correct? So let's say you do

what was first suggested, and you search the sequence database. You take this
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sequence, and you find that it actually has two homologs, two things with similar

sequence similarity. There are two proteins with 20% sequence identity that have

completely different structures.

This one has 20% sequence identity, and this one has 20% sequence identity. So

you have no way of deciding which one's which, right? And neither one is going to

be the right protein structure.

So you know that by putting the side chains onto these protein structures, you do

have to solve those problems with side chain optimization, but what, obviously, is

the other thing that you're going to need to have to solve? All right, you're going to

need to solve the backbone optimization problem, and this becomes even more

coupled because when I move this backbone, then the side chains move with it. So

now, I've got a very, very complicated optimization problem to deal with. The search

space is enormous, and even if I discretize it, it's still very, very large. In fact, there's

something famous called the Levinthal Paradox.

Of course, Cy Levinthal, who was once upon a time a professor here and then

moved to Columbia-- he did a back of the envelope calculation for extremely simple

models of protein structure. If you imagine the proteins were to randomly search

over all possible confirmations with very rapid switching between possible

confirmations, it would take basically the lifetime of the universe for a protein to ever

fold. So proteins don't do random searches over all possible confirmations, and they

can check out confirmations incredibly rapidly. So we certainly can't do that, so we'll

look at the optimization techniques.

All right, so we discussed how to use energy optimization functions to try to decide

which one's correct, and that even if the structure is the correct one, we have the

side chain optimization problem. If the structure's the incorrect one, we've got two

problems. We've got the backbone confirmation and the side chain.

This is frequently called fold recognition or threading. This choice of, you've got a

protein structure. You want to decide if your sequence matches this one or that one.
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There are a couple of other problems that we're going to look at. So this was

already raised by one of the students, the idea that we try to predict the secondary

structure of this protein, so we'll look at secondary structure prediction algorithms.

This was a very early area of computational effort in structural biology, and we'll see

that the early methods are remarkably good.

We can look for domain structures, and this is really a sequence problem. So we

can look through our sequences, and rather than looking for sequence identity or

similarity with known structures, we can see whether there are certain patterns, like

the hidden Markov models that you looked at in a previous lecture, that can allow us

to recognize the domain structure of a protein even without an identical sequence in

the database. So we won't go over that kind of analysis anymore, and then we'll

spend a good amount of time looking at ways of solving novel structures. So if you

don't have a fiendish friend who solved your structure for you, and there is no

homologue in the database, all is not lost. You actually can now predict novel

structures of proteins simply from the sequence.

All right, so a little history as to the prediction of protein structure. It really starts with

Linus Pauling, who went on to win the Nobel Prize for this work. And this is in the

era-- this paper was published in 1951. This was what computers looked like in

1951, and that thing probably has a lot less computing power than your iPhone or

your Android.

So Linus Pauling did not solve the structure of the alpha helix, predict that alpha

helices existed, using computers. He actually did it entirely with paper models. And

in fact, he solved this-- he got the key insights for the alpha helix when he was lying

sick in bed. That's a very productive sick leave, you might imagine.

He was using paper models, but it wasn't all done while lying in bed. So he and

others, the field as a whole, have spend a lot of time observing small molecule

distances, so they have some idea what to expect in protein structures. They didn't

know the three-dimensional structure, but they knew a lot of the parameters about

how far apart things were. And they also knew that hydrogen bonds were going to
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be extremely favorable in protein structures.

And so he looked for a repeating structure that would maximize the number of

hydrogen bonds that occur within the protein backbone chain. And he knew, also,

the backbone-- that the amide bonds would be planar and so on. So there were a

lot of principle that underlay this, but it was really a tour de force of just thinking

rather than computing.

Another really important contribution early on was made by Ramachandran, was at

Madras University, and his insight had to do with the fact that not all backbone

confirmations were equally favorable. So remember, we have these two rotatable

bonds in the backbone. We have the phi angle and the psi angle. And this plot

shows that there'll be certain confirmations of phi and psi angles that are observed

within these dashed lines, and then the other confirmations, which are almost never

observed.

Now, how did he figure that out? Once again, it wasn't with computation. It was

simply with paper models and figuring out what the distances would be, and then

carefully reasoning over those possible structures. So you can get very far in this

field, initially, back then, by simple hard thought.

OK, so with these two observations, we knew that there were going to be certain

kinds of regular secondary structure and that not all backbone confirmations were

equally favorable. OK, but now, we want to advance actually predicting structures of

particular proteins, not just saying that proteins in general will contain alpha helices.

So how do we go about doing that?

So the first advances here, we're trying to predict the structure of alpha helices, and

this paper in the 1960s introduced the concept of a helical wheel. Now, the idea

here, if you'll imagine that this eraser is an alpha helix, I'm going to look down the

backbone of the alpha helix. And I'll see that the side chains emerge at regular

positions. There's going to be 100 degree rotation between each sequential residue

in the backbone as it goes around helix. It's going to be displaced and rotated by

100 degrees, and I could plot, on a piece of paper, the helical projection, which is
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shown here.

So here's the first amino acid. 100 degrees later, the second. 100 degrees later, the

third. And I can ask whether the residues on that backbone have a sequence that

puts all the hydrophobics and hydrophilics on the same side, as in this case, or on

different sides.

Now, what difference does it make? Well, if I have an alpha helix that's lying on the

surface of a protein, this could have one side that's solvent exposed and one side

that's protected. So we would expect that some of these alpha helices lying on the

service would be amphipathic. Half of them would be hydrophobic, hydrophobic,

and half of them would be hydrophilic. And purely, as someone suggested from the

pattern of the amino acids, and here the hydrophobicity of the pattern of the amino

acids, we could make reasonable predictions of whether this protein forms a

particular kind of alpha helix, an amphipathic alpha helix.

Now, is that going to help us for all alpha helices? Obviously not, because I can

have alpha helices that are totally solvent exposed, and I can have alpha helices

that are totally protected. So this pattern will occur in some alpha helices, but not all.

So another idea that was raised here and was used early on with great success was

to actually figure out whether certain amino acids have a particular alpha helical

propensity. Do they occur more frequently in alpha helices? At the time, it was also

thought maybe you could find propensities for beta sheets and other structures.

So compute the statistics over for every amino acid, shown as a row here. How

often is it observed in the database? How often does it occur in alpha helix? And

how often does it occur in beta sheet or in a coil? And from these, then, we would

compute probabilities and compute using, perhaps, Bayesian statistics to compute

the poster expectation for having a certain sequence in alpha helix.

They didn't quite use Bayesian statistics here. They came up with a rather ad hoc

approach, and when you read it in hindsight, it seems kind of crazy. But actually,

you have to remember when this was being done. This is being done before a big
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influence of mathematicians into structural biology. This is 1974, and they used

more physical reasoning.

They knew something about how alpha helices formed from chemistry. They knew

that, typically, there's nucleation event, where a small piece of helix forms initially,

and then that extends. They knew that there were these propensities for certain

amino acids to form alpha helices, and other amino acids, which tended to break

the helix. And they came up with an ad hoc algorithm that counted how often you

had strong helix formers, how often you breakers. You can see all the details in the

references.

The amazing thing is, with this very ad hoc thing and a very, very small database of

protein structures, you could look at the total number of residues that they're looking

at over all the structures, there's 2,473 and residues, not structures. And now, we

have many, many more times than that of structures of proteins. Even with that, in

1974, they were able to achieve 60% accuracy in predicting the secondary structure

of proteins, so it's really an astounding accomplishment.

And to put that in perspective, there was an evaluation of a whole bunch of

secondary structure prediction algorithms done about a decade ago, and things

haven't changed that much since then, where between 1974 and 2003, almost 30

years, they went from 60% accuracy to 76% accuracy. OK, well, that's not bad, but

it's not a lot for-- you'd expect maybe over 30 years, you could do a lot better. So

the simple approach really captured the fundamentals of predicting secondary

structure. There's a lot of work that's been done since, and I encourage you to look

in the textbook if you're interested, to look at all the newer algorithms that have tried

to solve the secondary structure prediction problem. OK.

All right, so secondary structure prediction, then-- you can look in the textbook for

the modern methods, but the fundamental ideas were laid down by Chou and

Fasman in the 1974 paper. We're already said that looking at the kinds of

approaches that we discussed earlier in the course can help you solve domain

structures. I would like to focus on, at the end of this lecture and the beginning-- and
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the next lecture about how to actually solve novel structures from purely amino acid

sequence, and we're going to go back to the idea that there is a potential energy

function.

We now have both the CHARMM approach and the Rosetta approach to protein

structure, and so there is some protein folding landscape. There's an energy

function. If you have different conformations, you'll be at different positions in

landscape, and we'd like to figure out how to go from some starting confirmation

that may be arbitrary and find our way to the minimum energy structure.

All right, so there are going to be three fundamental things that we'll talk about in

the next lecture. We're going to talk about energy minimization, how to use these

potential energy functions that we started off with to go from approximate structures

to the refined structure. That's the thought problem I gave you.

You have the structure, but you have the wrong side chains. Could you minimize

them? And so that's making small changes.

We'll discuss molecular dynamics, which actually tries to simulate all the forces on a

protein and to actually carry out a physical simulation of the process. That's the

CHARMM approach, and we'll see some interesting variants on that. And then we'll

look at simulated annealing, which is an optimization technique that's actually quite

broad, but can be applied here, to search over large, large conformational spaces,

much further than a protein would actually evolve in a molecular dynamic simulation

that's simulating protein function.

You allow the protein, now, to jump between confirmations that have no real

potential to transfer between in a normal room temperature in water, but can be

done, obviously, easily in the computer. So I'll stop here. Any questions before we

close?
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