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Lecture 8 – RNA-seq Analysis 

•  RNA-seq principles 
– How can we characterize mRNA isoform 

expression using high-throughput sequencing? 
 

•  Differential expression and PCA 
– What genes are differentially expressed, and how 

can we characterize expressed genes? 
 

•  Single cell RNA-seq 
– What are the benefits and challenges of working 

with single cells for RNA-seq? 
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RNA-Seq characterizes RNA molecules 

A B C Gene in genome 

A B C pre-mRNA or 
ncRNA 

transcription 

A B C 

splicing 

A C 

export to cytoplasm 

mRNA 

nucleus 

cytoplasm 

High-throughput 
sequencing of RNAs 
at various stages of 
processing 

Slide courtesy Cole Trapnel  
Courtesy of Cole Trapnell. Used with permission.
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ET Wang et al. Nature 000, 
1-7 (2008) doi:10.1038/
nature07509 

Pervasive tissue-specific regulation of  
alternative mRNA isoforms. 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Wang, Eric T., Rickard Sandberg, et al. "Alternative Isoform Regulation in
Human Tissue Transcriptomes." Nature 456, no. 7221 (2008): 470-6.4

http://dx.doi.org/10.1038/nature07509
http://dx.doi.org/10.1038/nature07509


RNA-Seq: millions of short reads from fragmented mRNA  

Pepke et. al. Nature Methods 2009 

Extract RNA from 
cells/tissue 

+ splice junctions!

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Pepke, Shirley, Barbara Wold, et al. "Computation for ChIP-seq and RNA-seq Studies." Nature Methods 6 (2009): S22-32.
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Mapping RNA-seq reads to a reference genome reveals 
expression 

Sox2 
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Smug1 

Reads over exons 

Junction reads (split between exons) 

RNA-seq reads map to exons and across exons  
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Two major approaches to RNA-seq analysis 

1.  Assemble reads into 
transcripts.   Typical 
issues with coverage and 
correctness. 

2.  Map reads to reference 
genome and identify 
isoforms using constraints 

•  Goal is to quantify 
isoforms and determine 
significance of differential 
expression 

•  Common RNA-seq 
expression metrics are 
Reads per killobase per 
million reads (RPKM) or 
Fragments per killobase 
per million (FPKM) 

 

exon 1 exon 2 exon 3 

Short sequencing reads, 
randomly sampled from a 

transcript 

8



Aligned reads reveal isoform possibilities 

A B C 

A B C A B C 

A B C A B C 

identify candidate 
exons via genomic 
mapping  
 

Generate possible 
pairings of exons  
 

Align reads to possible 
junctions 
 

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell 

9



A 

B 

C 

D 

E 
Isoform  Fractio
T1         ψψ11""

T2          ψψ22""
T3         ψψ33""

T4          ψψ44""

n  

We can use mapped reads to learn the  
isoform mixture ψ"

Slide courtesy Cole Trapnell 

 
Courtesy of Cole Trapnell. Used with permission.
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    Common reads     Common reads 

Detecting alternative splicing from mRNA-Seq data 
Isoforms Inclusion reads 

Exclusion reads Given a set of reads, 
estimate: 

= Distribution of  isoforms 
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P(Ri | T=Tj) – Excluded reads 

If a single ended read or read pair Ri is structurally incompatible with 
transcript Tj, then 

  

Ri 

Tj 
 

P(R = Ri |T = Tj ) = 0

Intron in Tj 

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell 
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P(Ri | T=Tj) – Single end reads 

Ri 

Tj 

Cufflinks assumes that fragmentation is roughly uniform.  The probability 
of observing a fragment starting at a specific position Si  in a transcript of 
length lj is:""

P(S = Si |T = Tj ) =
1
l j

Transcript length lj 

starting position in transcript, Si 

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell 
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P(Ri | T=Tj) – Paired end reads 

Assume our library fragments have a length distribution described by a 
probability density F..  Thus, the probability of observing a particular paired 
alignment to a transcript:""

Tj 

Implied fragment length lj(Ri) 

Ri 

P(R = Ri |T = Tj ) =
F(l j (Rj ))

l j

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell 
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Estimating Isoform Expression 

•  Find expression abundances ψ1,…,ψn for  
       a set of isoforms T1,…,Tn 

•  Observations are the set of reads R1,…,Rm 

 

•  Can estimate mRNA expression of each isoform 

Ψ =
Ψ

argmaxL(Ψ | R)

L(Ψ | R)∝P(R |Ψ)P(Ψ)

using total 
number of reads that map to a gene and ψ 

 
 

 

P(R |Ψ) = Ψ jP(R = Ri |T = Tj )
j=0

n
∑

i=0

m
∏
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Case study: myogenesis 
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Courtesy of Cole Trapnell. Used with permission.

Cufflinks identified 116,839 
distinct transcribed fragments 
(transfrags) 

Nearly 70% of the reads in 
14,241 matching transcripts 

Tracked 8,134 transfrags 
across all time points, 5,845 
complete matches to UCSC/
Ensembl/VEGA 

Tracked 643 new isoforms of 
known genes across all points 

  

Transcript categories, by coverage 
 

Slide courtesy Cole Trapnell 
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Case study: myogenesis 

•  ~25% of transcripts have 
light sequence coverage, 
and are fragments of full 
transcripts 

•  Intronic reads, repeats, and 
other artifacts are 
numerous, but account for 
less than 5% of the 
assembled reads. 
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Courtesy of Cole Trapnell. Used with permission.
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Lecture 8 – RNA-seq Analysis 

•  RNA-seq principles 
– How can we characterize mRNA isoform 

expression using high-throughput sequencing? 
 

•  Differential expression and PCA 
– What genes are differentially expressed, and how 

can we characterize expressed genes? 
 

•  Single cell RNA-seq 
– What are the benefits and challenges of working 

with single cells for RNA-seq? 
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Scaling RNA-seq data (DESeq) 

•  i gene or isoform              
•  j sample (experiment)  
•  m number of samples 
•  Kij number of counts for isoform i in experiment j 
•  sj sampling depth for experiment j (scale factor) 
 
 

js =median
i

ijK
1
m

ivKv=1
m∏( )
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Model for RNA-seq data (DESeq) 

•  i gene or isoform             p condition 
•  j sample (experiment)        p(j)  condition of sample j 
•  m number of samples 
•  Kij number of counts for isoform i in experiment j  
•  qip  Average scaled expression for gene i condition p 
 
 

ijK ~ NB ijµ , ij
2σ( )

ij
2σ = ijµ + j

2s pv ip( j )q( )ijµ = ip( j )q js

ipq =
1

# of replicates
ijK
jsj in replicates

∑
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2 2σ ij = µ ij + s jvp(qip( j ))

Orange Line – DESeq 
Dashed Orange – edgeR 
Purple - Poission 

Courtesy of the authors. License: CC-BY.
Source: Anders, Simon, and Wolfgang Huber. "Differential Expression Analysis for Sequence Count Data." Genome Biology 11, no. 10 (2010): R106.
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http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://genomebiology.com/2010/11/10/R106


Significance of differential expression using test 
statistics 

•  Hypothesis H0 (null) – Condition A and B identically express 
isoform i with random noise added 

•  Hypothesis H1 – Condition A and B differentially express 
isoform  

•  Degrees of freedom (dof) is the number of free parameters in 
H1 minus the number of free parameters in H0; in this case 
degrees of freedom is 4 – 2 = 2  (H1 has an extra mean and 
variance). 

•  Likelihood ratio test defines a test statistic that follows the Chi 
Squared distribution   

 
 

iT = 2 log P( iAK |H1)P( iBK |H1)
P iAK , iBK |H0( )

P (H0) ≈1−ChiSquaredCDF (T i | dof )
27



Courtesy of the authors. License: CC-BY.
Source: Anders, Simon, and Wolfgang Huber. "Differential Expression Analysis for Sequence Count Data." Genome Biology 11, no. 10 (2010): R106.
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http://dx.doi.org/10.1186/gb-2010-11-10-r106
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Hypergeometric test for overlap significance 

N – total # of genes     1000 
n1 - # of genes in set A    20 
n2 - # of genes in set B    30 
k - # of genes in both A and B   3 
 

P k( ) =

n1
k

!

"
#

$

%
& N − n1

n2− k

!

"
#

$

%
&

N
n2

!

"
#

$

%
&

P x ≥ k( ) = P(i)
i=k

min(n1,n2)
∑

0.017 0.020 
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Lecture 8 – RNA-seq Analysis 

•  RNA-seq principles 
– How can we characterize mRNA isoform 

expression using high-throughput sequencing? 
 

•  Differential expression and PCA 
– What genes are differentially expressed, and how 

can we characterize expressed genes? 
 

•  Single cell RNA-seq 
– What are the benefits and challenges of working 

with single cells for RNA-seq? 
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Courtesy of Fluidigm Corporation. Used with permission.
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Single-cell RNA-Seq of LPS-stimulated bone-marrow-derived dendritic cells  
reveals extensive transcriptome heterogeneity. 

AK Shalek et al. Nature 000, 1-5 
(2012) doi:10.1038/nature12172 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Shalek, Alex K., Rahul Satija, et al. "Single-cell Transcriptomics Reveals Bimodality in Expression and Splicing in Immune Cells." Nature (2013).38

http://dx.doi.org/10.1038/nature12172


Analysis of co-variation in single-cell mRNA expression levels 
reveals distinct maturity states and an antiviral cell circuit. 

AK Shalek et al. Nature 000, 1-5 
(2012) doi:10.1038/nature12172 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Shalek, Alex K., Rahul Satija, et al. "Single-cell Transcriptomics Reveals Bimodality in Expression and Splicing in Immune Cells." Nature (2013).39

http://dx.doi.org/10.1038/nature12172


Analysis of co-variation in single-cell mRNA expression levels 
reveals distinct maturity states and an antiviral cell circuit. 

AK Shalek et al. Nature 000, 1-5 
(2012) doi:10.1038/nature12172 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Shalek, Alex K., Rahul Satija, et al. "Single-cell Transcriptomics Reveals Bimodality in Expression and Splicing in Immune Cells." Nature (2013).40

http://dx.doi.org/10.1038/nature12172


RNA-seq library complexity can help qualify cells for analysis 

Michal Grzadkowski 
© Michal Grzadkowski. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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RNA-seq library complexity can help qualify cells for analysis 

Michal Grzadkowski 
© Michal Grzadkowski. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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