Lecture 8 Understanding Transcription RNA-seq analysis

Foundations of Computational Systems Biology David K. Gifford

Lecture 8 – RNA-seq Analysis

- RNA-seq principles
 - How can we characterize mRNA isoform expression using high-throughput sequencing?
- Differential expression and PCA
 - What genes are differentially expressed, and how can we characterize expressed genes?
- Single cell RNA-seq
 - What are the benefits and challenges of working with single cells for RNA-seq?

RNA-Seq characterizes RNA molecules

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnel

Pervasive tissue-specific regulation of alternative mRNA isoforms.

Alternative transcript events		Total events (×10 ³)	Number detected (×10 ³)	Both isoforms detected	Number tissue- regulated	% Tissue- regulated (observed)	% Tissue- regulated (estimated)	
Skipped exon		37	35	10,436	6,822	65	72	
Retained intron		1	1	167	96	57	71	
Alternative 5' splice site (A5SS)		15	15	2,168	1,386	64	72	
Alternative 3' splice site (A3SS)		17	16	4,181	2,655	64	74	
Mutually exclusive exon (MXE)		4	4	167	95	57	66	
Alternative first exon (AFE)		14	13	10,281	5,311	52	63	
Alternative last exon (ALE)		9	8	5,246	2,491	47	52	
Tandem 3' UTRs	= = = = pA	A 7	7	5,136	3,801	74	80	
Total		105	100	37,782	22,657	60	68	
Constitutive ex		ody read	d •	Junctio oform E	n read j Exclusive ise		nylation site th isoforms	ET Wang e <i>t al. Natur</i> e 00 1-7 (2008) doi:10.1038/ nature07509

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Wang, Eric T., Rickard Sandberg, et al. "Alternative Isoform Regulation in

Human Tissue Transcriptomes." Nature 456, no. 7221 (2008): 470-6.

RNA-Seq: millions of short reads from fragmented mRNA

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Pepke, Shirley, Barbara Wold, et al. "Computation for ChIP-seq and RNA-seq Studies." Nature Methods 6 (2009): S22-32.

Pepke et. al. Nature Methods 2009

Mapping RNA-seq reads to a reference genome reveals expression

RNA-seq reads map to exons and across exons

Two major approaches to RNA-seq analysis

- 1. Assemble reads into transcripts. Typical issues with coverage and correctness.
- 2. Map reads to reference genome and identify isoforms using constraints
- Goal is to quantify isoforms and determine significance of differential expression
- Common RNA-seq expression metrics are Reads per killobase per million reads (RPKM) or Fragments per killobase per million (FPKM)

Short sequencing reads, randomly sampled from a transcript

Aligned reads reveal isoform possibilities

Courtesy of Cole Trapnell. Used with permission.

We can use mapped reads to learn the isoform mixture $\boldsymbol{\psi}$

Courtesy of Cole Trapnell. Used with permission.

Detecting alternative splicing from mRNA-Seq data

If a single ended read or read pair R_i is structurally incompatible with transcript T_j , then

$$P(R = R_i \mid T = T_j) = 0$$

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell

$$P(R_i | T=T_i) - Single end reads$$

Cufflinks assumes that fragmentation is roughly uniform. The probability of observing a fragment starting at a specific position S_i in a transcript of length I_i is:

$$P(S = S_i \mid T = T_j) = \frac{1}{l_j}$$

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell

$$P(R_i | T=T_i) - Paired end reads$$

Assume our library fragments have a length distribution described by a probability density F. Thus, the probability of observing a particular paired alignment to a transcript:

$$P(R = R_i | T = T_j) = \frac{F(l_j(R_j))}{l_j}$$

Implied fragment length $I_i(R_i)$

R_i

Courtesy of Cole Trapnell. Used with permission.

Estimating Isoform Expression

- Find expression abundances ψ₁,...,ψ_n for a set of isoforms T₁,...,T_n
- Observations are the set of reads R₁,...,R_m

$$P(R \mid \Psi) = \prod_{i=0}^{m} \sum_{j=0}^{n} \Psi_{j} P(R = R_{i} \mid T = T_{j})$$
$$L(\Psi \mid R) \propto P(R \mid \Psi) P(\Psi)$$
$$\Psi = \underset{\Psi}{\operatorname{argmax}} L(\Psi \mid R)$$

- Can estimate mRNA expression of each isoform using total number of reads that map to a gene and ψ

Case study: myogenesis

Transcript categories, by coverage

- Cufflinks identified 116,839 distinct transcribed fragments (transfrags)
- Nearly 70% of the reads in 14,241 matching transcripts
- Tracked 8,134 transfrags across all time points, 5,845 complete matches to UCSC/ Ensembl/VEGA
- Tracked 643 new isoforms of known genes across all points

Courtesy of Cole Trapnell. Used with permission.

Case study: myogenesis

Transcript categories, by coverage

- ~25% of transcripts have light sequence coverage, and are fragments of full transcripts
- Intronic reads, repeats, and other artifacts are numerous, but account for less than 5% of the assembled reads.

Courtesy of Cole Trapnell. Used with permission.

Lecture 8 – RNA-seq Analysis

- RNA-seq principles
 - How can we characterize mRNA isoform expression using high-throughput sequencing?
- Differential expression and PCA
 - What genes are differentially expressed, and how can we characterize expressed genes?
- Single cell RNA-seq
 - What are the benefits and challenges of working with single cells for RNA-seq?

Statistical tests: example

 The alternative hypothesis H₁ is more expressive in terms of explaining the observed data

 We need to find a way of testing whether this difference is significant

Degrees of freedom

How many degrees of freedom do we have in the two models?

$$H_{0}: \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix}, \begin{bmatrix} \sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{bmatrix}\right)$$
$$H_{1}: \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right)$$

Degrees of freedom

How many degrees of freedom do we have in the two models?

$$H_{0}: \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix}, \begin{bmatrix} \sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{bmatrix}\right)$$
$$H_{1}: \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right)$$

• The observed data overwhelmingly supports H_1

Test statistic

Likelihood ratio statistic

$$T(X^{(1)}, \dots, X^{(n)}) = 2\log \frac{P(X^{(1)}, \dots, X^{(n)}|\hat{H}_1)}{P(X^{(1)}, \dots, X^{(n)}|\hat{H}_0)}$$
(1)

Larger values of T imply that the model corresponding to the null hypothesis H_0 is much less able to account for the observed data

 To evaluate the P-value, we also need to know the sampling distribution for the test statistic

In other words, we need to know how the test statistic $T(X^{(1)}, \ldots, X^{(n)})$ varies if the null hypothesis H_0 is correct

Test statistic cont'd

• For the likelihood ratio statistic, the sampling distribution is χ^2 with degrees of freedom equal to the difference in the number of free parameters in the two hypotheses

 Once we know the sampling distribution, we can compute the P-value

$$p = Prob(T(X^{(1)}, \dots, X^{(n)}) \ge T_{obs} | H_0)$$
(2)

Scaling RNA-seq data (DESeq)

- i gene or isoform
- j sample (experiment)
- m number of samples
- K_{ii} number of counts for isoform i in experiment j
- s_i sampling depth for experiment j (scale factor)

$$s_{j} = median \frac{K_{ij}}{\left(\prod_{v=1}^{m} K_{iv}\right)^{1/m}}$$

Model for RNA-seq data (DESeq)

- i gene or isoform p condition
- j sample (experiment) p(j) condition of sample j
- m number of samples
- K_{ii} number of counts for isoform i in experiment j
- q_{ip} Average scaled expression for gene i condition p

$$q_{ip} = \frac{1}{\# \text{ of replicates }} \sum_{j \text{ in replicates }} \frac{K_{ij}}{S_j}$$

$$\mu_{ij} = q_{ip(j)} s_j$$
 $\sigma_{ij}^2 = \mu_{ij} + s_j^2 v_p (q_{ip(j)})$

$$K_{ij} \sim NB(\mu_{ij}, \sigma_{ij}^2)$$

$$\sigma_{ij}^2 = \mu_{ij} + s_j^2 v_p (q_{ip(j)})$$

Courtesy of the authors. License: CC-BY. Source: Anders, Simon, and Wolfgang Huber. "Differential Expression Analysis for Sequence Count Data." *Genome Biology* 11, no. 10 (2010): R106.

Significance of differential expression using test statistics

- Hypothesis H0 (null) Condition A and B identically express isoform i with random noise added
- Hypothesis H1 Condition A and B differentially express isoform
- Degrees of freedom (dof) is the number of free parameters in H1 minus the number of free parameters in H0; in this case degrees of freedom is 4 – 2 = 2 (H1 has an extra mean and variance).
- Likelihood ratio test defines a test statistic that follows the Chi Squared distribution

$$T_{i} = 2\log \frac{P(K_{iA} \mid H1)P(K_{iB} \mid H1)}{P(K_{iA}, K_{iB} \mid H0)}$$
$$P(H0) \approx 1 - ChiSquaredCDF(T_{i} \mid de)$$

Courtesy of the authors. License: CC-BY.

Source: Anders, Simon, and Wolfgang Huber. "Differential Expression Analysis for Sequence Count Data." Genome Biology 11, no. 10 (2010): R106.

Hypergeometric test for overlap significance

N – total # of genes	1000
n1 - # of genes in set A	20
n2 - # of genes in set B	30
k - # of genes in both A and B	3

$$P(k) = \frac{\binom{n1}{k}\binom{N-n1}{n2-k}}{\binom{N}{n2}}$$

$$P(x \ge k) = \sum_{i=k}^{\min(n1,n2)} P(i)$$

0.017

- How can we discover vector components that describe our data?
 - 1. To discover hidden factors that explain the data
 - 2. Similar to cluster centroids
 - 3. To reduce the dimensionality of our data

Multi-Variate Gaussian Review

Recall multi-variate Gaussians:

$$Z_i \sim N(0,1) \tag{5}$$

$$X = AZ + \mu \tag{6}$$

$$\Sigma = E[(X - \mu)(X - \mu)^T]$$
(7)

$$= E[(AZ)(AZ)^{T}]$$
(8)

$$= E[AZZ^T A^T]$$
(9)

$$= AE[ZZ^T]A^T$$
(10)

$$= AA^{T}$$
(11)

• A multivariate Gaussian model

$$p(x|\theta) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$
(12)

$$X \sim N(\mu, \Sigma)$$
(13)

where μ is the mean vector and Σ is the covariance matrix

• Consider the variance of X projected onto vector v

$$Var(v^{T}X) = E[(v^{T}X)^{2}] - E[v^{T}X]^{2}$$
(14)
= $v^{T}E[XX^{T}]v - v^{T}E[X]E[X^{T}]v$ (15)

$$= v^{T} (E[XX^{T}] - E[X]E[X^{T}])v$$
(16)

$$= v^T \Sigma v \tag{17}$$

- We would like to pick v_i to maximize the variance with the constraint $v_i^T v_i = 1$. Each v_i will be orthogonal to all of the other v_i
- The v_i are called the eigenvectors of Σ and λ_i^2 are the eigenvalues:

$$\Sigma v_i = \lambda_i^2 v_i \tag{18}$$

$$v_i^T \Sigma v_i = v_i^T \lambda_i^2 v_i \tag{19}$$

$$v_i^T \Sigma v_i = \lambda_i^2 v_i^T v_i \tag{20}$$

$$v_i^T \Sigma v_i = \lambda_i^2 \tag{21}$$

- How do we find the eigenvectors v_i ?
- We use singular value decomposition to decompose Σ into an orthogonal rotation matrix U and a diagonal scaling matrix S:

$$\Sigma = USU^T \tag{22}$$

$$\Sigma U = (USU^T)U \tag{23}$$

$$= US$$
 (24)

• The columns of U are the v_i , and S is the diagonal matrix of eigenvalues λ_i^2

 How do we interpret eigenvectors and eigenvalues with respect to our orginal transform A?

$$X = AZ + \mu \tag{25}$$

• A is:

$$A = US^{1/2} \tag{26}$$

$$\Sigma = AA^T \tag{27}$$

$$\Sigma = USU^T \tag{28}$$

• Thus, the transformation A scales by $S^{1/2}$ and rotates by U independent Gaussians to make X

$$Z_i \sim N(0,1) \tag{29}$$

$$X = US^{1/2}Z + \mu$$
 (30)

Example PCA Analysis

477 sporulation genes classified into seven patterns resovled by PCA

Lecture 8 – RNA-seq Analysis

- RNA-seq principles
 - How can we characterize mRNA isoform expression using high-throughput sequencing?
- Differential expression and PCA
 - What genes are differentially expressed, and how can we characterize expressed genes?
- Single cell RNA-seq
 - What are the benefits and challenges of working with single cells for RNA-seq?

Courtesy of Fluidigm Corporation. Used with permission.

Single-cell RNA-Seq of LPS-stimulated bone-marrow-derived dendritic cells reveals extensive transcriptome heterogeneity.

AK Shalek et al. Nature 000, 1-5 (2012) doi:10.1038/nature12172

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Shalek, Alex K., Rahul Satija, et al. "Single-cell Transcriptomics Reveals Bimodality in Expression and Splicing in Immune Cells." Nature (2013).

Analysis of co-variation in single-cell mRNA expression levels reveals distinct maturity states and an antiviral cell circuit.

AK Shalek et al. Nature 000, 1-5 (2012) doi:10.1038/nature12172

Courtesy of Macmillan Publishers Limited. Used with permission.

Analysis of co-variation in single-cell mRNA expression levels reveals distinct maturity states and an antiviral cell circuit.

AK Shalek et al. Nature 000, 1-5 (2012) doi:10.1038/nature12172

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Shalek, Alex K., Rahul Satija, et al. "Single-cell Transcriptomics Reveals Bimodality in Expression and Splicing in Immune Cells." Nature (2013).

RNA-seq library complexity can help qualify cells for analysis

© Michal Grzadkowski. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

RNA-seq library complexity can help qualify cells for analysis

© Michal Grzadkowski. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

FIN

MIT OpenCourseWare http://ocw.mit.edu

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.