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Lecture 8 — RNA-seq Analysis

 RNA-seq principles
— How can we characterize mRNA isoform
expression using high-throughput sequencing?

» Differential expression and PCA

— What genes are differentially expressed, and how
can we characterize expressed genes?

» Single cell RNA-seq

— What are the benefits and challenges of working
with single cells for RNA-seq?



RNA-Seq characterizes RNA molecules
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High-throughput
sequencing of RNAs
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processing
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Courtesy of Cole Trapnell. Used with permission.
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Pervasive tissue-specific regulation of
alternative mRNA isoforms.
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Wang, Eric T., Rickard Sandberg, et al. "Alternative Isoform Regulation in
Human Tissue Transcriptomes." Nature 456, no. 7221 (2008): 470-6.
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RNA-Seq: millions of short reads from fragmented mRNA

Extract RNA from
cells/tissue

+ splice junctions

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Pepke, Shirley, Barbara Wold, et al. "Computation for ChIP-seq and RNA-seq Studies." Nature Methods 6 (2009): S22-32.

Pepke et. al. Nature Methods 2009


http://dx.doi.org/10.1038/nmeth.1371

Mapping RNA-seq reads to a reference genome reveals
expression

Sox2



RNA-seq reads map to exons and across exons

Reads over exons

Smug1

Junction reads (split between exons)



Two major approaches to RNA-seq analysis

1. Assemble reads into

transcripts. Typical Short sequencing reads,
. . randomly sampled from a
Issues with coverage and transcript
correctness.

2. Map reads to reference - o —
genome and identify SN SIS GE—
iIsoforms using constraints L

. Goal is to quantify I

isoforms and determine
significance of differential exon 1 exon 2 exon 3
expression

« Common RNA-seq
expression metrics are
Reads per killobase per
million reads (RPKM) or
Fragments per killobase
per million (FPKM)



Aligned reads reveal isoform possibilities
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Courtesy of Cole Trapnell. Used with permission.
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Align reads to possible
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We can use mapped reads to learn the

iIsoform mixture

Isoform Fraction
T, P,
T, P,
T, P
T, Py

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell
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Detecting alternative splicing from mRNA-Seq data

Isoforms Inclusion reads
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. Exclusion reads
Given a set of reads,

estimate:
m = Distribution of isoforms
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P(R;| T=T,) — Excluded reads

If a single ended read or read pair R; is structurally incompatible with
transcript T;, then

P(R=R,IT=T)=0

Intron in Tj

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell
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P(R;| T=T,) — Single end reads

Cufflinks assumes that fragmentation is roughly uniform. The probability
of observing a fragment starting at a specific position S; in a transcript of

length J; is:
P(S=S. |T=TJ.)=ll

J

starting position in transcript, S;

Transcript length J;

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell
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P(R;| T=T,) — Paired end reads

Assume our library fragments have a length distribution described by a
probability density F. Thus, the probability of observing a particular paired
alignment to a transcript:

F(,(R))

P(R=RIT=T))= l

J

Implied fragment length /(R))

Courtesy of Cole Trapnell. Used with permission.

Slide courtesy Cole Trapnell
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Estimating Isoform Expression

Find expression abundances v,,...,y,, for
a set of isoforms T,,...,T,

Observations are the set of reads R,,...,R,,

P(RIW)=[[SW P(R=R,IT=T)

i=0 j=0

L(WIR)x P(RIW)P(W)

Y =argmaxL(W|R)
v

Can estimate mMRNA expression of each isoform using total
number of reads that map to a gene and vy
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Case study: myogenesis
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Courtesy of Cole Trapnell. Used with permission.
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Cufflinks identified 116,839
distinct transcribed fragments
(transfrags)

Nearly 70% of the reads in
14,241 matching transcripts

Tracked 8,134 transfrags
across all time points, 5,845
complete matches to UCSC/
Ensembl/VEGA

Tracked 643 new isoforms of
known genes across all points

Slide courtesy Cole Trapnell



Case study: myogenesis

Transcripts (%)

Transcripts

1.0

0.8

0.6

0.2 0.4

0.0

50000

0 20000

Transcript categories, by coverage

® match novel isoform
+ contained + repeat
e intra-intron ¢ other

0.1 1 10 100 1000 10000

0.01

0.1 1 1000 10000
Reads per bp

Courtesy of Cole Trapnell. Used with permission.

“‘|II||'.ltooooo ooooo
I I I 1
10 100

~25% of transcripts have
light sequence coverage,
and are fragments of full
transcripts

Intronic reads, repeats, and
other artifacts are

numerous, but account for
less than 5% of the
assembled reads.

Slide courtesy Cole Trapnell



Lecture 8 — RNA-seq Analysis

 RNA-seq principles
— How can we characterize mRNA isoform
expression using high-throughput sequencing?

 Differential expression and PCA

— What genes are differentially expressed, and how
can we characterize expressed genes?

» Single cell RNA-seq

— What are the benefits and challenges of working
with single cells for RNA-seq?
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Statistical tests: example

e [ he alternative hypothesis H; is more expressive in terms of ex-
plaining the observed data
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e We need to find a way of testing whether this difference is sig-
nificant
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Degrees of freedom

e How many degrees of freedom do we have in the two models?
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Degrees of freedom

e How many degrees of freedom do we have in the two models?
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e [ he observed data overwhelmingly supports H;
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Test statistic

e Likelihood ratio statistic

pxQ, ... x(™)H;) (1)
P(x), .. xm|A,)

Larger values of T" imply that the model corresponding to the
null hypothesis Hg is much less able to account for the observed
data

T(x1) ... . X"y =2]|0g

e [0 evaluate the P-value, we also need to know the sampling
distribution for the test statistic

In other words, we need to know how the test statistic 7(X (1), ..., x(1)
varies if the null hypothesis Hg is correct
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Test statistic cont’d

e For the likelihood ratio statistic, the sampling distribution is X2
with degrees of freedom equal to the difference in the number of
free parameters in the two hypotheses

4
35

3
25

2

15 i labs

05

i i A ] - .
0 05 1 15 2 25 3 3% 4 45 5

e Once we know the sampling distribution, we can compute the
P-value

p= Prob(T(XV,...,X™) > T, | Ho) (2)
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Scaling RNA-seq data (DESeq)

| gene or isoform

j sample (experiment)

m number of samples

K; number of counts for isoform i in experiment j
s; sampling depth for experiment j (scale factor)

Kij

s ;= median
( \’Z/l=1 Kiy

l

)%



25

Model for RNA-seq data (DESeq)

| gene or isoform p condition

j sample (experiment) p(j) condition of sample |
m number of samples

K; number of counts for isoform i in experiment j

di, Average scaled expression for gene i condition p

_ 1 E K ij
# of replicates j in replicates § ;

Qip

_ 2 2
Wi =g Sj Oij —Mlj"'Sij(qz'p(j))

K~ NB(Mij’O'izj)
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Courtesy of the authors. License: CC-BY.
Source: Anders, Simon, and Wolfgang Huber. "Differential Expression Analysis for Sequence Count Data." Genome Biology 11, no. 10 (2010): R106.

Anders and Huber Genome Biology 2010, 11:R106
http//genomebiology.com/2010/11/10/R106
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Significance of differential expression using test
statistics

Hypothesis HO (null) — Condition A and B identically express
isoform i with random noise added

Hypothesis H1 — Condition A and B differentially express
isoform

Degrees of freedom (dof) is the number of free parameters in
H1 minus the number of free parameters in HO; in this case
degrees of freedomis 4 — 2 =2 (H1 has an extra mean and

variance).

Likelihood ratio test defines a test statistic that follows the Chi

Squared distribution
P(Kin|H)P(K ;5| H1)

P(KiAaKiBlHO)
P(HO) ~]- ChiSquaredCDF(T,- | dof)

Ti= 210g
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Figure 3 Testing for differential expression between conditions
A and B: Scatter plot of log, ratio (fold change) versus mean.
The red colour marks genes detected as differentially expressed at
10% false discovery rate when Benjamini-Hochberg multiple testing
adjustment is used. The symbols at the upper and lower plot
border indicate genes with very large or infinite log fold change.
The corresponding volcano plot is shown in Supplementary Figure
S8 in Additional file 2.

\ /
Courtesy of the authors. License: CC-BY.
Source: Anders, Simon, and Wolfgang Huber. "Differential Expression Analysis for Sequence Count Data." Genome Biology 11, no. 10 (2010): R106.

Anders and Huber Genome Biology 2010, 11:R106
http://genomebiology.com/2010/11/10/R106



http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://genomebiology.com/2010/11/10/R106

Hypergeometric test for overlap significance

N — total # of genes 1000
n1 - # of genes in set A 20
n2 - # of genes in set B 30
K - # of genes in both A and B 3
( nl )( N -nl )
min(nl,n2)
k I’l2 - k = ]
P(k)= P(XZk) E P(l)

)

0.017 0.020

29
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Principle Component Analysis (PCA)

e How can we discover vector components that describe our data?
1. To discover hidden factors that explain the data
2. Similar to cluster centroids
3. To reduce the dimensionality of our data
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Multi-Variate Gaussian Review

e Recall multi-variate Gaussians:

~J

Zi
X
¥

N(0,1)
AZ 4+ p

= BX— (X —=p)']

= E[(AZ)(AZ)T]

E[AZZT AT}
AE[ZZzT)1AT
AAT

e A multivariate Gaussian model

1

p(z|0) =
X ~ N(p,1X)

where p is the mean vector and % is the covariance matrix

(2m)P/2|Z|1/2

(5)
(6)
(7)
(8)
(9)
(10)
(11)

exp{ — (@ — )=z~ )} (12)

(13)
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Principle Component Analysis (PCA)

e Consider the variance of X projected onto vector v

Var(wTX) = E[(vTX)?] - E[T X)? (14)
= WEXXTv — o TEX]|E[XT v (15)
= +I(EXXT] - E[X]E[XT))v (16)
= vl 3w (17)

e We would like to pick »v; to maximize the variance with the con-
straint v'{vi = 1. Each v; will be orthogonal to all of the other

V;

e T he v; are called the eigenvectors of 2 and )\2.2 are the eigenvalues:

Z’UZ'
v;-r 2 v;
/&
v; 2 v;
’U;‘T Z'Uz'

A2 (18)
vy Av; (19)
>\Z~2’U;-T’Ui (20)
A= (21)
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Principle Component Analysis (PCA)

e How do we find the eigenvectors v;7

e We use singular value decomposition to decompose 2 into an
orthogonal rotation matrix U and a diagonal scaling matrix S:

2
> W )

e [ he columns of U are the
eigenvalues \?

= UsuT (22)
= (WUsuhHu (23)
= US (24)

v;, and S is the diagonal matrix of
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Principle Component Analysis (PCA)

e How do we interpret eigenvectors and eigenvalues with respect
to our orginal transform A7

X = AZ+4p (25)
o A is:

A = US/? (26)

¥ = AAT (27)

> = UsuT (28)

e Thus, the transformation A scales by S1/2 and rotates by U in-
dependent Gaussians to make X

Z; ~ N(0,1) (29)

X = USY2Z 4y (30)



35

Example PCA Analysis

477 sporulation genes classified into seven patterns resovied by
PCA
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Lecture 8 — RNA-seq Analysis

 RNA-seq principles
— How can we characterize mRNA isoform
expression using high-throughput sequencing?

» Differential expression and PCA

— What genes are differentially expressed, and how
can we characterize expressed genes?

» Single cell RNA-seq

— What are the benefits and challenges of working
with single cells for RNA-seq?
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Single-cell RNA-Seq of LPS-stimulated bone-marrow-derived dendritic cells
reveals extensive transcriptome heterogeneity.
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Courtesy of Macmillan Publishers Limited. Used with permission.
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Analysis of co-variation in single-cell mMRNA expression levels

reveals distinct maturity states and an antiviral cell circuit.

PC2
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Shalek, Alex K., Rahul Satija, et al. "Single-cell Transcriptomics Reveals Bimodality in Expression and Splicing in Immune Cells." Nature (2013).
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Analysis of co-variation in single-cell mMRNA expression levels
reveals distinct maturity states and an antiviral cell circuit.
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RNA-seq library complexity can help qualify cells for analysis
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RNA-seq library complexity can help qualify cells for analysis
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