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PROFESSOR: OK. Well hello, everyone. And welcome back to Computational Systems Biology. I

am David Gifford and I am delighted to be back with you today.

We're going to talk, today, about understanding transcription. Specifically, how we're

going to understand transcription is a technique called RNA-seq. And RNA-seq is a

methodology for characterizing RNA molecules through next generation

sequencing.

And we'll talk, first, about RNA-seq principles. We'll then talk about how to take the

data we learn from RNA-seq and analyze it using tools for characterizing differential

gene expression and principal component analysis. And finally, we'll talk about

single cell RNA-seq, which is a very important and growing area of scientific inquiry.

But first, let's talk about RNA-seq. How many people have heard of RNA-seq

before? Fantastic. How many people have done it before? Some? Great.

So RNA-seq is fairly simple in concept. What we're going to do is we're going to

isolate RNA species from a cell or collection of cells in the desired condition. And

note that we can choose which kind of RNA molecules to isolate.

We can isolate molecules before any selection, which would include molecules that

are precursor RNAs that have not been spliced yet, including non-coding RNAs. As

you probably know, the study of non-coding RNAs is extraordinarily important.

There are over 3,300 so-called long non-coding RNAs that have been characterized

so far. Those are non-coding RNAs over 200 bases long. We'll be talking about

those later on, when we talk about chromatin function in the genome.

And of course, there are the precursor messenger RNAs that are spliced, turned
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into messenger RNAs that are then translated into protein. And the specifics of the

RNA-seq protocol will give you various of these species depending upon what kinds

of purification methodologies you use. But as you're aware, there are many

isoforms that are possible in most mammalian genes.

This is a short summary, produced by the Burge Laboratory, of different kinds of

splicing events that can occur. And the splicing events are often regulated by cis-

regulatory sequences that live in the introns. And these introns contain recognition

sequences for splicing factors where the splicing factors can be conditionally

expressed. And so you get different combinations of these exons being glued

together to produce variant forms of proteins.

So we have to be mindful of the idea that the RNA molecules that we're going to be

observing, typically, are going to be reverse transcribed. So we'll see entire

transcripts that came, perhaps, from distinct exonic locations in the genome.

And the essential idea of RNA-seq is that we take the RNA molecules we care

about-- in this case, we're going to purify the ones that have poly-A tails. We will

take those molecules. We'll reverse transcribe them. We'll sequence fragments of

them and then map them to the genome.

Now if you don't purify for poly-A tails, you get a lot of things mapping to the

genome that are intronic. And so you get a lot of data that is very difficult to analyze.

So typically, people, when they're looking for gene expression data, will do poly-A

purification. And when you do this-- when you sequence the result of doing the

reverse transcription of these RNA molecules-- and you map the results to the

genome, what you find is data that looks like this.

This is the SOX2 gene. This is typical expression data. You can see all of the

individual reads mapping to the genome, the blue in the plus strand, the pink on the

minus strand. And our job is to take data like this and to analyze it.

Now we can take these data and we can summarize them in various formats. One

way is to simply count the number of times that we see a read at a particular base,
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like here, for the SMUG1 gene. And here you see something else going on, which is

that we have reads from-- the sequencing experiments have been polyadenylated

and purified. So we're only seeing the reads that occur over the exonic sequences,

more or less. There are a few intronic reads there, scattered about.

The other thing that we see, which is very important, is that we see reads that are

split across exons. Because the splicing event has occurred, the RNA molecule is a

contiguous sequence of a collection of exons. And sometimes you'll get a read that

spans an exon-exon boundary. And when we get this, you can see, in the bottom

part of the slide that I'm showing you, these reads can map across the exons.

Typically, in order to get good performance out of something like this, we want to

use reads that are about 100 bases long. And we'll use a mapper that is capable of

mapping both ends of a read to account for split reads for these exon crossing

events. So that gives you an idea of the kinds of data that we have. And part of the

challenge now is looking at how we can determine which particular isoforms of a

gene are being expressed by evaluating these data.

So there are two principal ways of going about this. One way is we simply take our

read data, and we use the ideas that we talked about in genome assembly, and we

assemble the reads into transcripts. That's typically done de novo. There are

reference guided assemblers.

It has the benefit that you don't need a reference genome. So sometimes, when

you're working with an organism that does not have a well characterized reference

genome, you will de novo assemble the transcripts from an RNA-seq experiment.

But it also has problems with correctness, as we saw when we talked about

assembly. The other approach, which is more typically used, is to map reads, or

aligned the reads, to a reference genome and identify the different isoforms that are

being expressed using constraints. And ultimately, the goals is to identify the

isoforms and quantitate them so we can do further downstream analysis.

And you'll hear about two different metrics, sometimes, in the literature, for

expression. One is the number of reads per kilobase of transcript per million reads.
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So you might have, for example, an RPKM metric of 1,000, which means that one

out of every thousandth read is mapping to a particular gene. So it gives you a

metric that's adjusted for the fact that longer genes will produce more reads.

An alternative metric is fragments per kilobase per million. And that's sometimes

used when we're talking about paired end data. And you're considering that you're

sequencing both ends of a fragment. So here we're talking about how many

fragments we see for a particular gene per 1,000 bases of the gene per million

fragments.

OK. So the essential idea, then, is to take the reads that we have-- the basket of

reads-- align it to the genome, both to exons and to exon crossings, and to

determine, for a given gene, what isoforms we have and how they're being

expressed. So from here on in, I'm going to assume that we're talking about a gene

and its isoforms. And that's OK. Because typically, we can map reads uniquely to a

gene. And there are details, of course, when you have genes there are paralogs

that have identical sequences across the genome where this becomes more

difficult.

So if we consider this, once again, we're going to take our reads, we're going to

map them to the genome, and we're going to look for all possible pairings of exons.

What we would like to do is to enumerate all of the possible isoforms that are

possible given the data that we have. And we can use junction crossing reads and

other methodologies to enumerate all the possible isoforms.

But what we're going to assume is that we've enumerated all the isoforms. And

we're going to number them 1 through n. So we have isoform 1, isoform 2, isoform

3 for a given gene. And what we want to compute for each isoform is its relative

contribution to the read population we're seeing that maps to that gene.

So in order to do that, what we could do is use some constraints. So if I show you

this picture, which suggests that we have possible splice events here for the event C

in the middle, if I told you that A, C, and E were very highly covered by reeds, you

might think that A, C, and E represented one isoform that was highly expressed.
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And so if we think about how to use our read coverage as a guide to determining

isoform prevalence, we'll be in good shape.

And really, that's the best evidence we have. We have two sources of evidence,

right? We have our junction crossing reads, which tell us which exons are being

spliced together, that helps us both compute the set of possible isoforms and

estimate their prevalence. The other thing we have is the reads that actually simply

cover exons. And their relative prevalence can also help us compute the relative

amounts of different isoforms.

So in order to do this, we can think about what reads tell us. And some reads will

exclude certain isoforms. So if we consider the reads that we have, we can think

about reads that cross particular junctions that are inclusion reads saying that-- for

example, in this case, the top reads are indicating that the middle white exon is

being included in a transcript whereas the bottom reads are exclusion reads

indicating that that white exon in the middle is being spliced out.

So what we would like to do, then, is to build a probabilistic model that takes into

account what we know about what a read tells us. Because each read is a piece of

evidence. And we're going to use that read like detectives. We're going to go in and

we're going to try and analyze all of the different reads we see for a gene and use it

to weight what we think is happening with the different isoform expressions in the

pool of reads that we're observing.

And in order to do so, we will have to build a function that describes the probability

of seeing a read given the expression of a particular isoform. So the essential idea

is this-- for the next three slides, I want to build a model of the probability of seeing

a read conditioned upon a particular isoform being expressed. All right? So there

are three ways to approach this.

One is that I can see a read that I know is incompatible with a given isoform. And

therefore, the probability of seeing that read given the isoform is 0. And that's

perfectly fine. And this can either happen with a single ended read or with a paired

end read. And it's a conditional probability. So the probability of seeing read i given
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and isoform j can be 0.

Another possibility is that, if I have a transcript-- now recall that the transcript has

been spliced. So what we're looking at is the entire sequence of the spliced isoform.

And we see a read. And the read can land anywhere within that transcript. Let's

assume, for the time being, we're looking at single ended read. Then, the probability

of seeing that read land in that transcript is 1 over the length of the transcript-- all

right-- at a particular base.

So this read is compatible with that transcript. And we can describe the probability in

this fashion. It's also possible for us to consider paired end reads. And if we have

paired end reads, we can describe a probability function that has two essential

components.

The denominator is still the same. That is, the likelihood of the read aligning at a

particular position is going to be 1 over the length of the entire transcript. The

numerator is different though. We're going to compute the length of the read that

we have, or the implied length of the paired end read, and ask, what's the likelihood

of seeing that.

So we don't know the exact length, recall, of the insert. When we're looking at

paired end reads, we can only estimate how long the fragment is that we're

sequencing. And so we are going to have a probabilistic interpretation of how long

the piece of RNA is that we actually wound up sequencing the ends of. And that is

placed in the numerator, which scales the 1 over l sub j. So this gives us a

probability for seeing a read in a particular transcript that accounts for the fact that

we have to back both ends to that transcript. OK?

So we have three possibilities that we've described, one, where a particular read is

incompatible with an isoform, two, where we had a single end read mapping to an

isoform, which is simply 1 over the length of the isoform, and three, where we're

mapping paired end reads to an isoform, which includes uncertainty about where it

will map, which is the 1 over l sub j, and also uncertainty about the length of the

fragment itself, which is encoded in the F function, which is a distribution over
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fragment lengths.

OK. So once we have this structure, we can then estimate isoform expression. Now

we talked before, when we talked about ChIP-seq last time, the idea of estimating

proportions. And the essential idea here is that if we want to compute the probability

of a read given, in this case, a mixture of isoforms, that's simply going to be-- let's

see, what variable did I use? Yeah-- the estimated concentration of that isoform

times the probability of the read as seen in that isoform.

So for an individual read, we can estimate its likelihood given this mixture. And then

the product around the outside describes how to estimate the probability of the

entire basket of reads that we see for that gene. And what we would like to do is to

pick psi, in this case, to maximize the likelihood of the observed reads. So what psi

is going to do is it's going to give us the fraction of each isoform that we see.

Are there any questions about the idea of isoform quantitation? Yes.

AUDIENCE: I'm a little lost in-- in the last full slide review, you were describing these three cases

for excluded, single, and paired reads. So we're computing the different probabilities

for both ends to happen in a transcript, of for just one, or--

PROFESSOR: It depends. The second and third cases depend upon whether we're analyzing

single ended reads or paired end reads. And so we wouldn't use both of them at the

same time. In other words, if you only have single ended data, you would use the

second case that we showed. And if you had paired end data, you would use the

third case that we showed.

AUDIENCE: OK.

PROFESSOR: Question, yes.

AUDIENCE: Sorry. I noticed that the single end reads case-- could you explain the intuition

behind that probability [INAUDIBLE]?

PROFESSOR: Sure. The intuition behind that probability is that we're asking-- so here is a

7



transcript. And we're assuming, what is the probability of a read given that it came

from this transcript. OK? What's the probability of observing a particular read?

And the probability of observing it lining up at a particular position is 1 over the

length of this transcript. And so the probability actually includes the idea of

alignment at a particular position in the transcript. OK? So obviously, the

probability's 1 if we assume it comes from here if we don't consider this fact. But if

we want to ask where it lines up in the transcript, it's going to be 1 over l sub j. OK?

AUDIENCE: So we assume that it's uniformly possible?

PROFESSOR: That it's uniformly possible, which gets us to a good point. I'm glad you asked that

question. Sometimes we would have more reads at the three prime end of a

transcript than the five prime end. Can anybody imagine why? Yes.

AUDIENCE: Because you're pulling on the poly-A tails.

PROFESSOR: Yeah. So this actually was purified by the poly-A tail. And we're pulling on this. We're

purifying by it. And if there's breakage of these transcripts as it goes through the

biochemical processing, we can get shorter and shorter molecules. They all contain

this bit. And the probability to contain that whole thing actually decreases.

So oftentimes there is three prime bias in RNA-seq experiments one needs to be

mindful of. But we're assuming, today, that there isn't such bias and that the

probability's equal that it maps someplace in this transcript. OK? Does that answer

your question? Yes.

AUDIENCE: Sorry. I do have one more. Can you show us how that extends, then, to the paired

end read and where the probability distribution--

PROFESSOR: Right. So if we go to paired end reads, right, like this, this component is going to be

where it aligns, right? And then, the probability of the length of this entire molecule

is what I had up there before, which is-- exactly how did I do that?

So this is going to be-- this is this bit, which is the implied length of this. OK? So if I

map the left and the right-- this component is where the left end maps. OK? I take
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the left and the right ends of the read that I have from that transcript. And it has a

particular length on this transcript. OK? I'll call that length l sub j of R sub i.

Now remember, that is not the same as the length in the genome. That's the length

in this transcript as it is spliced. OK? F is going to be the probability distribution of

the length of the fragments. So let's just say that they're centered around 200

bases. OK?

So if this is exactly 200 bases, it's going to be quite likely. OK? But imagine that

when I map this fragment, this wound up being 400 bases apart. Then, this

distribution would tell is it's very unlikely that I would see a fragment that mapped

here and mapped 400 bases up here, because my fragment with distribution

defined by F is 200 bases.

So it's going to discount that, the probability of that. So this term that the probability

of the read given the transcript is the component of where it's aligning times the

likelihood that the implied fragment length agrees with what we think we have

empirically. OK? Does that make sense? OK. Those are good questions.

OK. So given this framework, we can either use EM or other machine learning like

frameworks to maximize psi and to learn the fraction of expression of each different

isoform from the observed data given the functions that we have. And just to give

you an idea, when this was done for myogenesis, a program called Cufflinks, which

does this kind of process of identifying isoform prevalences, was able to identify a

large number of transcripts.

70% of the reads were in previously annotated transcripts. But it also found 643 new

isoforms of genes in this single time series. And I posted one of the papers that

describes some this technology on the Stellar site. But note that certain of the genes

have light coverage.

And what we're seeing here is that for genes are expressed in low copy numbers,

it's obviously more difficult to get reads out of them. And I'm presuming, in this

particular experiment-- although I can't recollect-- that the reason they don't see
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that many intronic reads is they did poly-A purification.

OK. So we've talked about how to take our reads, build a probabilistic model,

estimate isoform prevalences. And we know how many reads are mapping to a

given gene. The question now is whether or not we see differential expression of a

gene in different conditions. So I'd like to turn to the analysis of differential

expression unless there are any final questions about the details of RNA-seq and

isoform estimation.

This is your chance to ask those hard questions. Yes.

AUDIENCE: OK. I have a really silly question. But can you explain, really quickly, what are

isoforms?

PROFESSOR: What an isoform is?

AUDIENCE: Yeah.

PROFESSOR: Sure. An isoform is a particular splice variant of a gene. So a gene that has a

particular splicing pattern is called an isoform. So imagine we have three exons,

one, two, and three. And a transcript that has all three would be one isoform. And

another variant that omits two would be a second isoform. So just one in three

would be an isoform.

And each gene has a set of isoforms it exhibits. And that depends upon how it's

regulated and whether or not any splicing is constitutive-- it always happens-- or

whether or not it's regulated. And so in theory, a gene with n exons has how many

potential isoforms?

It's 2 to the n. Because you can consider each exon being included or omitted. All

right. But that isn't typically the case-- that there are many fewer isoforms than that.

But in general, an isoform refers to a particular splice variant of a gene. Yes.

AUDIENCE: I just want to make sure I have everything correctly. When you're using single

legged or pair end reads, you can get excluded ends, right? So you can get that in

both cases, whether or not you're--
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PROFESSOR: Well, it depends. Once again, it's somewhat probabilistic where the reads actually

hit. Because if all the reads only hit exons, and you didn't get any junctions, and

none of your paired end reads crossed junctions, then you wouldn't actually have

exclusion. All right?

AUDIENCE: But it's possible for using both types of sequencing?

PROFESSOR: Yes, it's possible with both types of sequencing. In fact, oftentimes, what people do

is that they will count junction crossing reads. If you have a large enough number of

reads in your sequencing, say, 100 base pairs at least, then a large number of your

reads are going to be-- not a large, but a significant fraction-- will be exon crossing.

And you'll be able to count the number of exon-exon junctions you have of different

types.

And that will give you an estimate of how much splicing is going on and will help

validate the kinds of conclusions that come out of programs like Cufflinks or MISO,

which is another program from the Burge Laboratory that is used to estimate

isoform prevalence. Yes.

AUDIENCE: So even given this information, you can't say which exons go with which exons

necessarily, except paralogs, right? Because the reads, in general, aren't long

enough to span an exon. And therefore we wouldn't know, for example, that a given

transcript is exons one, five, and six. You could only know that exons five and six

went together.

PROFESSOR: That is not strictly true if you have paired end reads and your fragments are long

enough to span exons. But in general, you're correct. And that's why modern

sequencing technologies that are coming down the pike that can do 25 kilobase

reads are so important for doing things just like that. Yes.

AUDIENCE: In your diagram of the read up there, are the boxes the actual genome or RNA

sequence and the line in between the artificial linker that you added when you seq

ref'd?
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PROFESSOR: Ah, that's a good question. The question is, is this the linker and these are the

actual sequences. No. What I'm drawing here is that these are the bits that we

actually get to see the sequence of. We sequence from both ends of a molecule.

This is the part of the fragment that we haven't sequenced because our reads aren't

long enough.

And so the entire fragment might be 300 bases long. If this is 100 and this is 100,

then the unobserved part is 100 in the middle. OK? And that's called the insert

length, the entire length of the molecule.

And we get to choose how long these fragments are up to a maximum size.

Contemporary sequencers don't really like fragments over 1,000 bases. And the

performance starts falling off when you get close to that number. So people,

typically, are operating in a more optimal range of fragments that are a few hundred

bases long. Any other questions? OK.

So I wanted to briefly talk about hypothesis testing. Because we're going to be

needing it for determining when things are really differentially expressed. So I'm just

going to show you some data and ask you a few questions about it.

So here are two different scatters of data. Well, actually, it's exactly the same data.

But we have two different bits to it. We have two independent Gaussians that are fit

to the data, from gene one and gene two. And another fit uses two Gaussians that

have a correlation structure between them.

And the question is whether or not the null hypothesis or the alternative hypothesis

is more reasonable. And typically, when we say reasonable, we want to judge

whether or not it's significant. Significance typically talks about, what's the chance

that the data we saw occurred at random given the null hypothesis. So what's the

chance it was generated by the null hypothesis versus the chance that it was

generated by the alternative hypothesis?

Now the problem is that alternative hypotheses, typically, are more complex. And a

more complex model will always explain data better. So we need to have a
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principled way of asking the question, given that the alternative hypothesis is always

going to do a better job, does it do such a better job that it can exclude the null

hypothesis at a particular probability level. OK?

So here are two different models for these data. The null model, H0, is that they

came from two independent Gaussians. The alternative model, H1, is that they

came from two correlated Gaussians. And then we can ask whether or not H1 is

sufficiently more likely to warrant our rejecting H0 and accepting H1.

Now as I said, H1 is always going to fit the data better. So the probability of that

collection of points evaluated with the H1 model, fit to the data, is always going to be

superior. So we need to have a way to compare the probability of the data given H1

versus the data given H0 in a way that allows us to judge the probability that the

data via H0 occurred at random.

In this particular case, the data supports H1. And let's see why. So this is a key idea

here. How many people have heard of likelihood ratio statistics before? OK. About

half the class. OK. So here's the idea.

The idea is that what we're going to do is we're going to compute a test statistic.

And the test statistic is going to be a function of the observed data. And it's 2 times

the log of the probability of the observed data given H1 over the probability of the

observed data given H0. OK?

Now we know that this is always going to have a higher value than the probability in

the denominator. So this is always going to be greater than 1. So the test statistic

will always be greater than 0 since we're operating in the log domain. OK?

The question is-- we know that this is always going to be better, even when the data

was generated from H0. But when is this sufficiently better for us to believe that H0

is not true and we should accept H1? What we need is a distribution for this test

statistic that occurred if H0 was true. And that distribution allows us to compute the

probability that an observed value for the test statistic occurred, even in the

presence-- assuming that H0 is true.
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OK. So this depends upon the number of degrees of freedom difference between

H1 and H0. How many degrees of freedom are there in H1 in this model up here?

How many parameters do we get to pick?

AUDIENCE: Six.

PROFESSOR: Hmm?

AUDIENCE: Six.

PROFESSOR: Six?

AUDIENCE: Two means and four--

PROFESSOR: Two means and four coherences. And for H0?

AUDIENCE: Just four.

PROFESSOR: Four. So what's the difference in the number of degrees of freedom between H1

and H0? It's two. So the test statistic is parametrized by the difference in number of

degrees of freedom. And so what we see, then, is something that looks like this.

We see a test statistic where this is the probability of it, on the y-axis, and the test

statistic on the x-axis. But as the test statistic gets larger and larger, the probability

that it occurred with H0 being true gets smaller and smaller. So let us just suppose

that we took our data from our model that we observed. And we computed the test

statistic at a particular value call T observed.

So this is the actual value that we computed out of our likelihood ratio test. What we

would like to ask is, what's the probability that our test statistic is greater than or

equal to T observed given that H0 is true, which means that we're going to consider

all the tail of this distribution. Because we want to also consider the case where T

observed was even greater than what we saw. And this gives us a way of computing

the probability that H0 is true given the test statistic. And this gives us our p-value.

OK?
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So this is a way of, in general, comparing two probabilistic models and analyzing the

significance of adding extra degrees of freedom to the model. Typically, what we'll

be doing in today's lecture is asking whether or not-- if we let the means change, for

example, between two conditions-- we get a sufficient improvement in our ability to

predict the data that our test statistic will allow us to reject the null hypothesis that

the means are the same.

OK. I'm going to stop here and see if there are any questions at all about this.

AUDIENCE: Yes. Where did the degrees of freedom enter into the equation?

PROFESSOR: Where did the degrees of freedom enter into this? Great question. The chi-square

tables that you look up are indexed by the number of degrees of freedom of

difference. OK? And so whenever you compute a chi-squared, you will compute it

with the number of degrees of freedom difference. Any other questions?

OK. So let's now turn to evaluating RNA-seq data once again. And I'm going to

describe a method called DESeq for determining differential expression. And in our

analysis, what we're going to do is we're going to let i range over a gene or an

isoform. j is an experiment. And there may be multiple experiments in the same

condition that are replicates. And Kij is the number of counts observed for i and j. So

that's the expression of gene or isoform i in experiment j.

Now what we need to do, however, is to normalize experiments against one

another. And the normalization factor s sub j is computed for a particular

experiment. And it's used to normalize all of the values in that experiment. And if all

the experiments were completely identical-- the read depth was identical and

everything was the same-- then all of the s sub js would be 1.

If you had an experiment that had exactly twice as many reads as the other

experiments, it's s sub j would be 2. So this scale factor is used to normalize things

in our next slide, as we'll see. And the essential idea is that we're going to take the

median value of this ratio.

And the reason that the denominator is a geometric mean is so that no one
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experiment dominates the average. They all have equal weight for the average. But

the geometric mean is simply the product of all of the expressions for a particular

median gene taken to the root m power to get them back to the value for a single

experiment. And that is the normalizing factor for the numerator, which is the

number of counts for a particular gene. OK?

So we're just doing median style normalization where s sub j is a scale factor. Once

again, if all the experiments were the same, s sub j would be 1. If one particular

experiment had twice as many counts as another experiment uniformly, s sub j

would be 2, just for that experiment. Any questions about the scale factor? Yes.

AUDIENCE: Sorry, what is the term on the bottom-- in the denominator?

PROFESSOR: That's a normalizing term across-- that's the geometric mean of all the experiments

put together. All right? So because it's the product of all the experiments-- m

experiments-- then, rooted m, it's equal to the geometric mean of a single

experiment. Any other questions? Yes.

AUDIENCE: Are we normalizing different experiments to each other or different replicates of a

single experiment?

PROFESSOR: In this particular case, each one of these is a different replicate. OK? So j is ranging

over different replicates, not over conditions, right now. So each replicate, each

experiment, gets its own normalizing factor. We'll see, in a moment, how to put

those replicates together to build statistical strength. But we need-- since each

replicate has its own read depth, we have to normalize each one independently.

OK?

So what we then do is we compute an expression for a condition. Now a condition,

we're going to call p. And q sub ip is the normalized expression for gene slash

isoform i in condition p.

So a condition may have multiple replicates in it. So we're going to average, over all

of the replicates, the average expression, as you can see here. So we're summing

over all the replicates for a given condition. We're going to take each replicate,
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normalize it by its scale factor we just computed, and then compute the normalized

expression for a gene or an isoform in that particular condition. Is that clear to

everybody, what's going on here?

Now I'm describing this to you because the key fact is the next line, which is that we

compute the mean for a particular replicate by taking the normalized expression for

a gene and then reverse correcting it back to scaling it back up again for that

particular replicate by multiplying by s sub j. But the most important thing is what's

on the right hand side, which is that the variance is equal to the mean plus this

function of the expression.

And the reason this is important is that most other models for modeling expression

data use Poisson models. And we've already seen, when we talked about library

complexity, that Poisson models don't work that well all the time. So this is using a

negative binomial function, once again. We saw negative binomials before. We're

modelling both the mean and the variance. And the variance is a function, a linear

function and a non-linear function, of the mean.

So what's going to happen, then, is that we're going to use the negative binomial to

compute the probability of observing the data in a given condition. And we can

either combine conditions and ask, what's the probability of seeing the conditions

combined with a single mean and variance, or we can separate them into a more

complex H1 hypothesis and ask, what's the probability of seeing them with separate

means and variances, and then do a test to see how significant the difference is to

determine whether or not we can exclude the fact that the genes are expressed at

the same level.

And to give you an intuitive idea of what's going on, this is a plot from the paper

showing the relationship between mean expression and variance. Recall, for

Poisson, that variance is equal to mean. We only have one parameter to tune for

Poisson, which is lambda. The purple line is Poisson. And you can check and see

that the mean's equal to the variance in that case. What DESeq does is it fits the

orange line to the observed data. Yes.
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AUDIENCE: I don't know where the v sub p comes from. Where is that, again?

PROFESSOR: That's the function. V sub p, in that equation up there, is the function that we're

fitting-- that's the solid orange line-- to the observed relationship between mean and

variance in the data. OK? So DESeq fits that function. EdgeR is another technique

that does not fit and instead uses the estimate that's the dotted line, which isn't as

good.

So a lot of people use DESeq these days for doing differential expression analysis

because it allows the variance to change as the mean increases. And this is the

case for these type of count data. Before I go on though, I'll pause and see if there

are any questions at all about what's going on here. Yes.

AUDIENCE: You said that mu sub p, then, is the [INAUDIBLE] to the data. I'm confused. How do

we fit that function, or where does that come from?

PROFESSOR: You mean the mu sub p?

AUDIENCE: Yes.

PROFESSOR: That function is fit. And the paper describes exactly how it's fit, which I posted on the

Stellar site. But it's a nonlinear function of q, in this case. Good question. Any other

questions? OK.

So once again, we have two hypotheses, the null hypothesis that A and B are

expressing identically, H1, A and B differentially express. We can compute the

number of degrees of freedom. And we can do a likelihood ratio test, if we'd like, to

compute the probability of H0.

And our model in this case is the negative binomial model of the data, which fits the

data better. And that's why DESeq does a better job than other methodologies.

Because it provides a better approximation to the underlying noise.

And the next slide shows what you get out of this kind of analysis, where the little

red dots are the genes that have been called significant using Benjamini-Hochberg
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correction, which we talked about previously. And you can see how, as the mean

increases, the required log 2 fold change comes down to be significant. So

oftentimes, you'll see plots like this in papers that describe how they actually

computed what genes were differentially expressed. Any questions at all? Yes.

AUDIENCE: Why is it that the significance is lower as the mean increases?

PROFESSOR: Why the significance is lower?

AUDIENCE: Or the threshold.

PROFESSOR: Oh, because as you increase the number of observations, the mean value theorem

is going to cause things to actually get closer and closer to 0. And so you need less

of a fold change difference to be significant as you get more and more

observations. And other questions? OK.

So now we're going to delve into one other area. How many people have done

hypergeometric tests before? OK. So we're going to talk about hypergeometric

tests.

So imagine that we have a universe, for simplicity, of 1,000 genes. OK? So we have

this universe. And we have, B is a set of genes that there are 30 of them. And

there's another set, A, of which there are 20. And the overlap between these two is

a total of three genes.

So it might be that A is the set of genes that are differentially expressed between

two conditions. B is the set of genes that, you happen to know, have a particular

annotation. For example, they're involved in stress response in the cell. And you'd

like to know whether or not the genes that are differentially expressed have a

significant component of stress response related genes or whether or not this

occurred at random. OK?

So we need to compute that. So how many ways could we choose B? Well, if we are

going to use-- this is n1, n2, this is big N, and this is k. All right? So the number of

ways I can choose B is big N choose n2. That's the number of ways I can choose B.
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Is everybody with me on that? Yeah? OK.

How many ways can I choose three elements out of A, these three that are going to

overlap? Well, that's going to be n1 choose k. So that's how many ways I can

choose these three elements.

And then, how many ways could I choose the other elements of B? So once again,

I'm figuring out how I can choose B. Well, how could I choose the rest of B? Well,

how many elements do I have to choose, of B, here?

Well, B is n too big. But I've already chosen k of them. Right? All right. Sorry, it's the

other way around. The universe I can pick from is 1,000, which is all the elements,

minus the elements of A that I've already chosen from to get those three.

And then I need to pick the 27 things they don't overlap with A. So 27 things that

don't overlap with A would be n2 minus k. So this is the number ways to choose B

given this set of constraints. This is the number of ways to choose B given no

constraints. So the probability that I have overlap of exactly k is equal to this, which

is, how many ways are there with no constraints and how many ways are there

given that I have an overlap of k. All right?

And typically, what I want to ask is, what is the probability that my observed overlap

is greater than or equal to k. So this case, the overlap would be three. But I also

would need to consider the fact that I might have four, or five, or six, which would be

even more unlikely, but still significant. So if you look at the exact computation, the

probability of three here is 0.017. And the probability that I have three or more is

0.02.

So that's still pretty significant. Unlikely that would occur by chance. Right? That I

have three or more genes overlapping in this situation could only happen two out of

100 times. Does everybody understand what's going on here? Any questions at all?

So you're all now hypergeometric whizzes, right? All right? Fantastic.

OK. Now we're going to turn to a final kind of analysis. How many people have

heard of principal component analysis before? How many people know how to do
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principal component analysis? A few. OK. Great. Yes.

AUDIENCE: Sorry, could you just briefly mention, again, where exactly do we use the

hypergeometric test? What kinds of questions are we asking when we do that?

PROFESSOR: Typically, they're overlap questions. So you're asking-- you have a universe of

objects, right-- like, in this case, genes. And you have a subset of 20 and a subset

of 30. Let's say these are the differentially expressed genes. These are genes in the

stress response pathway. They overlap by three genes. Does that actually occur at

random or not? All right?

If I told you that there are a much smaller number of genes and the stress response

genes were very much larger, it could be much easier for that overlap to occur at

random. Good question. Any other questions?

OK. So the next part of lecture is entitled "multivariate Gaussians are your friends."

OK? They are friendly. They're like a puppy dog. They are just wonderful to play

with and very friendly. And the reason most people get a little turned off by them is

because they get this-- the first thing they're shown is this very hairy looking

exponential which describes what they are.

And so I'm going to shy away from complicated looking exponentials and give you

the puppy dog, my favorite way of looking at multivariate Gaussians. OK? Which, I

think, is a great way to look at them. And the reason we need to look at multivariate

Gaussians is that they help us understand what is going on with principal

component analysis in a very straightforward way.

And the reason that we want to use principal component analysis is that we're going

to be able to reveal hidden factors and structures in our data. And they're also going

to allow us to reduce the dimensionality of the data. And we'll see why in a moment.

But here is the friendly version of multivariate Gaussians. And let me describe to

you why I think this is so friendly. So we're all familiar with unidimensional

Gaussians like this. Centered at zero. They have variance 1. Just very friendly

univariate Gaussians, right? Everybody's familiar with those? Normal distributions?
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So let's suppose that we just take a whole collection of those. And we say that we

have a vector z that is sampled from a collection of univariate Gaussians. And it can

be as long as we like. OK? But they're all sampled from the same distribution. And

what we're going to say is that our multivariate Gaussian, x, is going to be a matrix

times z plus a mean.

And so what this matrix is going to do is it's going to take all of our univariate

Gaussians and combine them to produce our multivariate Gaussian. All right? So

the structure of this matrix will describe how these single variate Gaussians are

being mixed together to produce this multivariate distribution. And you can imagine

various structures for this matrix A. Right?

And the covariance matrix, sigma, which describes the structure of this multivariate

Gaussian, is shown on this slide to be equal to A A transpose. And thus, if we knew

this matrix A, which we may not know, we'd be able to compute the covariance

matrix directly. OK?

Let me take that one more time. We take a bunch of univariate Gaussians, make a

vector z out of them. And just for clarity, right, we're going to talk about matrices and

vectors as rows across columns. So this is n by 1. This is n by n. This is n by 1. And

this is n by 1. OK? That's the dimensionality of these various objects we're dealing

with here.

So we get this vector of univariate Gaussians. We apply this matrix n to combine

them together. We get out our multivariate Gaussian offset by some mean. Is

everybody happy with that so far? Yes? No? You're suspending disbelief for the

next slide. Is that-- OK.

Well, here's the next thing I'd like to say, is that the variance of a vector-- we'll call it

v-- times x, which is a random variable, is going to be equal to-- x is derived from

this distribution-- v transpose sigma v. And the demonstration of that is on the top of

this page. So the variance of this vector-- sorry, the projection of this random

variable onto this vector-- is going to give you a variance in this direction as that
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product.

So what we would like to do is this. We would like to find v sub i, which are vectors,

to maximize variance of v sub i transpose x such that v sub i transpose v sub i is

equal to 1. In other words, they're unit length vectors. So these are going to be

called the eigenvectors.

And if we think about the structure that we desire, what we'll find is that they satisfy

the constraint that the covariance matrix times an eigenvector is equal to the

eigenvalue associated with that vector times the vector itself. And with a little

manipulation-- if we multiply both sides by v sub i transpose-- v sub i equals v sub i

transpose lambda sub i sigma squared v sub i-- and we move these guys around, v

sub i transpose sigma v sub i is equal to-- these two guys, multiplied together, equal

1-- lambda sub i squared.

This, we see up above, is equal to the variance when it's projected in the direction

of v. And so lambda sub i squared is simply the variance associated with that

direction. So the question then becomes, how do we find these things. And how do

we discover these magic eigenvectors that are directions in which this multivariate

Gaussian has its variance maximized?

And we can do this by singular value decomposition. So we can compute this

covariance matrix. So we compute sigma from the data. And then we do a singular

value decomposition such that sigma is equal to U S U transpose.

And that's what the singular value decomposition does for us is it decomposes the

sigma matrix into these components where S is a diagonal matrix that contains the

eigenvalues and U is a column. Each column is an eigenvector. So in doing a

singular value decomposition, we get the eigenvalues and the eigenvectors.

The other thing, you recall, was that sigma was equal to A A transpose when we

started off. A was the matrix that we used to make our multivariate Gaussian out of

our univariate Gaussians. And thus, what we can observe is that our multivariate

Gaussian x is equal to U S to the 1/2 times z plus a mean. So here is what's going
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when we make a multivariate Gaussian is we're taking a bunch of univariate

Gaussians, we're scaling them, and we're rotating them. OK?

And that makes a multivariate Gaussian. And then we offset this whole thing by a

mean. Because we also have to do rotations around the origin.

So the way I think about multivariate Gaussians is that it is a scaling and a rotation

of univariate Gaussians. And implicit in that scaling and rotation is the discovery of

the major directions of variance in the underlying data as represented by the

eigenvectors. And the eigenvalues tell you how much of the variance is accounted

for in each one of those dimensions. Are there any questions about that? I hope

there are. Yes.

AUDIENCE: How do you compute sigma from the data? Is it some magical process?

PROFESSOR: The sigma of the value of decomposition?

AUDIENCE: No. So--

PROFESSOR: How do you compute sigma from the data?

AUDIENCE: Yeah, the first step.

PROFESSOR: That is shown in equation seven. So you can compute the means. And you know

you have x, which are observed values. So you compute that expectation. And that

is sigma. OK? Good question. Any other questions?

OK. So we have these eigenvectors and eigenvalues, which represent the vectors

of maximum variance in the underlying data. And we can use these to organize data

by projecting observations onto these eigenvectors-- or they're sometimes called

principal components-- defined dimensions of variability that help us organize our

underlying data. We'll come back to that in a moment. OK. Any other questions

about principal component analysis? Yes.

AUDIENCE: [INAUDIBLE] e was expectation when you were calculating the second?
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PROFESSOR: Yes, e is the expectation is correct.

AUDIENCE: And also what that means.

PROFESSOR: It's the average expected value. So in the case of computing sigma, you would

compute the expected value of that inner equation across all the data points that

you see. So you'd sum up all the values and divide by the number of things that you

had. Any other questions? OK.

So just for calibration for next year, how many people think they've got a general

idea of what principal component analysis is-- a general idea? Uh-oh. How many

people who thought it was really interesting were sort of completely baffled about

halfway through? OK. All right.

Well, I think that recitation can help with some of those questions. But if anybody

has a question they'd like to ask now-- No? It's that far gone? I mean, the thing with

this sort of analysis is that if your matrix algebra is a little rusty, then, when you start

looking at equations like that, you can get a little lost sometimes.

All right. Well, let's turn, then-- if there aren't any brave souls who wish to ask a

question, we'll turn to single cell RNA-seq analysis. So I'm a firm believer that single

cell analysis of biological samples is the next big frontier. And it's being made

possible through devices like this.

This is a Fluidigm C1 chip, which has 96 different reaction wells, which allows you,

in each well, to process a single cell independently. And the little winds are ways to

get reagents into those cells to do things like produce RNA-seq ready materials.

And when you do single cell analysis, you can take apart what's happening in a

population.

So an early paper asked some fairly fundamental but simple questions. For

example, if you take two 10,000 cell aliquots of the same culture, and you profile

them independently, and you ask how well to the expression values for each gene

agree between sample A and sample B, you expect there to be a very good

agreement between sample A and sample B in these 10,000 cell cultures.
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A second question is, now, if you take, say, 14 cells from those cultures and you

profile them independently, and you ask, how well do they correlate with what you

saw in the 10,000 cell experiment, that will tell you something about the population

heterogeneity that you're observing. Because if they correlate perfectly with the

10,000 cell experiment, then you really know that there's no point in looking at

individual cells in some sense, because they're all the same. Seen one, seem them

all. Right? But if you find that each cell has its own particular expression fingerprint

and what you're seeing in the 10,000 cell average experiment wipes out those

fingerprints, then you know it's very important to analyze each cell individually.

So the analysis that was done asked exactly that question. So here's what I'll show

you in these plots. So here is, on the upper left, the 10,000 cell experiment versus

the 10,000 cell experiment. And as you can see, the correlation coefficient is quite

high-- 0.98-- and looks very, very good of experiment one versus experiment two,

or rep one, rep two. Here is a separate experiment which is looking at two individual

cells and asking-- and plotting, for each gene, the expression in one cell versus the

gene in the other cell.

And you can see that the correlation coefficient's 0.54. And there's actually a fairly

wide spread. In fact, there are genes that are expressed in one cell that are not

expressed in the other cell, and vice versa. So the expression of these individual

cells it's quite divergent.

And the final panel shows how-- down here-- how a single cell average on the y-axis

relates to the 10,000 cell experiment. But given the middle panel-- the panel B

there-- that is showing the fact that two single cells don't really relate that well to

another, it bags other questions. For example, are the isoforms of the genes that

are being expressed the same in those distinct cells? And so panel D shows

isoforms that are the same across each one of the single cells being profiled, which

is the solid bar at the top. And the bottom couple of rows in figure D are the 10,000

cell experiment average.

But panel E is the most interesting, perhaps, which is that the isoforms for those
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four genes are being differentially expressed in different individual cells. And that's

further supported by taking two of those genes and doing fluorescent in situ

histochemistry and microscopy, and looking at the number of RNA molecules for

each one of those, and noting that it corresponds to what's seen in the upper right

hand panel. So we see that in individual cells, different isoforms are being

expressed.

Now these cells were derived from bone marrow. And they're exposed to

lipopolysaccharide to activate an immune response. So they are clearly not all

behaving exactly the same.

And to further elucidate this, the authors of this paper took the gene expressions

that they saw for a given cell as a large vector and computed the principal

components, and then projected the cells into the first and second principal

component or eigenvector space. And as you can see, there is a distinct separation

of three of the cells from the rest of the cells, where three of the cells, which

correlate well with principal component one, are thought to be mature cells that

express certain cell surface proteins whereas the ones on the left-- the maturing

cells-- the triangle depicted cells-- express certain cytokines under the maturing

legend there, on the clustergram on the right-hand side.

And thus, the first principal component was able to separate those two different

broad classes of cells. So it looks like there are at least two different kinds of cells in

this population. And then, the authors asked another question, which is, can they

take individual cell data and look at the relationship between pairs of genes to see

which genes are co-expressed.

And the hypothesis is that genes that are co-expressed in individual cells make up

individual regulatory circuits. And so they hypothesize that the genes LRF7 and

IFIT1 and STAT2 and LRF7 are all in an anti-viral regulatory circuit. They then ask

the question, if they knocked out LRF7, which is the second panel on the right-hand

side, would they oblate downstream gene expression.

And they partially did. And they thought that since STAT2 and LRF7 are both

27



thought to be regulators of the circuit and they're both downstream of the interfering

receptor, they thought if they knocked out the interfering receptor, they would oblate

most of the anti-viral cluster, which, in fact, they did.

So what this is suggesting is that, first, single cell analysis is extraordinarily

important to understand what's going on in individual cells. Because in a cell culture,

the cells can be quite different. And secondarily, it's possible, within the context of

individual single cell analysis, to be able to pick out regulatory circuits that wouldn't

be as evident when you're looking at cells en masse.

And finally-- I'll thank Mike for the next two slides-- I wanted to point out that quality

metrics for RNA-seq data for single cells is very important. And we talked about

library complexity earlier in the term. And here, you can see that as library

complexity increases, expression of coefficient of variation, which is the standard

deviation over the mean, comes down as you get sufficient library complexity. And

furthermore, as library complexity increases, mean expression increases.

And the cells that are in red were classified as bad by microscopy, from the Fluidigm

instrument processing step. So I think you can see that single cell analysis is going

to be extraordinarily important and can reveal a lot of information that is not present

in these large batch experiments. And it's coming to a lab near you.

So on that note, I'll thank you very much for today. And we'll see you later in the

term. And Professor Burge will return at the next lecture. Thanks very much.
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