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Predictions 
Last time: protein structure Now: protein interactions 

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/. © source unknown. All rights reserved. This content is excluded

Source: Lindorff-Larsen, Kresten, Stefano Piana, et al. "How Fast-folding from our Creative Commons license. For more information,

Proteins Fold." Science 334, no. 6055 (2011): 517-20. see http://ocw.mit.edu/help/faq-fair-use/.
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Bayesian Networks 

A “natural” way to think about 
biological networks. 
 
 

Predict unknown variables from 
observations 
 
 

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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• Bayesian Networks are a tool for reasoning 
with probabilities 

• Consist of a graph (network) and a set of 
probabilities 

• These can be “learned” from the data 

Bayesian Networks 
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Graphical Structure Expresses our 
Beliefs 

P1-P2 
REAL 

Detected 
by X1 

Detected 
by Xn 

… 

Cause  (often “hidden”) 

Effects (observed) 
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How do we obtain a BN? 

• Two problems:  
– learning graph structure 

• NP-complete 
• approximation algorithms 

– probability distributions 
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Goal 

• What other data could help? 
 

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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Properties of real interactions: correlated expression  
Expression Profile Reliability (EPR) 

Deane et al. Mol. & Cell. Proteomics (2002) 1.5, 349-356 

INT = high confidence 
interactions from  

small scale experiments 

d = “distance” that measures the difference 
between two mRNA expression profiles 

Note: proteins involved in “true” protein-
protein interactions have more similar mRNA 
expression profiles than random pairs.  Use 
this to assess how good an experimental set 

of interactions is. 

© American Society for Biochemistry and Molecular Biology. All rights reserved. This content is excluded

from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Deane, Charlotte M., Łukasz Salwiński, et al. "Protein Interactions Two Methods for Aassessment of
the Reliability of High Throughput Observations." Molecular & Cellular Proteomics 1, no. 5 (2002): 349-56.
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Co-evolution 

Cokus et al. BMC Bioinformatics 2007 8(Suppl 4):S7   doi:10.1186/1471-2105-8-S4-S7 

More likely to interact 

Which pattern below is more likely to 
represent a pair of interacting proteins?  

Courtesy of Cokus et al. License: CC-BY.

Source: Cokus, Shawn, Sayaka Mizutani, et al. "An Improved Method for

Identifying Functionally Linked Proteins Using Phylogenetic Profiles."

BMC Bioinformatics 8, no. Suppl 4 (2007): S7.
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Rosetta Stone 

• Look for genes that are 
fused in some organisms 
– Almost 7,000 pairs found in 

E. coli. 
– >6% of known interactions 

can be found with this 
method 

– Not very common in 
eukaryotes 
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Integrating diverse data 

http://www.sciencemag.org/content/302/5644/449.abstract 12

http://www.sciencemag.org/content/302/5644/449.abstract�


Requirement of Bayesian 
Classification 

• Gold standard training data 
– Independent from evidence 
– Large 
– No systematic bias 

Positive training data: MIPS 
• Hand-curated from literature 
Negative training data:  
• Proteins in different subcellular compartments 
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Integrating diverse data 

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
15

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1087361
http://dx.doi.org/10.1126/science.1087361


likelihood ratio = if > 1 classify as true 
if < 1 classify as false 

log likelihood ratio =  

Prior probability is the same for all interactions 
--does not affect ranking 

Ranking function =  

( | _ )( | _ )log
( | _ ) ( | _ )

M
i

i i

P Observation true PPIP Data true PPI
P Data false PPI P Observation false PPI

 
= 

 
∏
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Protein pairs in the essentiality data can 
take on three discrete values (EE, both 
essential; NN, both non-essential; and NE, one 
essential and one not) 

1,114/2150 

81,924/573,734 

Likelihood=L= 
)|(
)|(

negfP
posfP
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© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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What do we mean by fully 
connected? 

P1-P2 
REAL 

Gavin Ho Uetz Ito 

P1-P2 
REAL 

Gavin 

Ho Uetz 

Ito 

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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Fully connected → 
Compute probabilities for all 16 
possible combinations 

P1-P2 
REAL 

Gavin 

Ho Uetz 

Ito 

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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Fully connected → 
Compute probabilities for all 16 
possible combinations 

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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Interpret with caution, as 
numbers are small 

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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TF=FP 

prediction 
based on 
single data 
type all have 
TP/FP<1 

How many gold-standard events do we 
score correctly at different likelihood 
cutoffs? 

( | _ )log
( | _ )

P Data true PPI
P Data false PPI

 
 
 

© American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach

for Predicting Protein-protein Interactions from Genomic Data."

Science 302, no. 5644 (2003): 449-53.
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Outline 

• Bayesian Networks for PPI prediction 
• Gene expression 

– Distance metrics 
– Clustering 
– Signatures 
– Modules 

• Bayesian networks 
• Regression 
• Mutual Information 
• Evaluation on real and simulated data 
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Gene Expression Data 

• Identify co-expressed 
genes 

• Classify new datasets 
• Discover regulatory 

networks 

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Baker, Monya. "Gene Data to Hit Milestone." Nature 487,
no. 7407 (2012): 282-3.
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Clustering 

• Text Section 16.2 
• Multiple mechanisms could lead to up-

regulation in any one condition 
• Goal: Find genes that have “similar” 

expression over many condition. 
• How do you define “similar”? 
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Distance Metrics 
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XA,1 

XA,2 

XB,2 

XB,1 

Gene B 

Gene A 
expression  

in experiment  
2 

Expression data as  
multidimensional vectors 

expression  
in experiment  

1 

XA =(   1, 0.5,    -1, 0.25, …) 
XB =(0.2, 0.4, -1.2, 0.05, …) 
… 
 

What is a natural way to compare these vectors? 
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Euclidean 

• Xi,j = Expression of gene i in condition j  

XA,1 

XA,2 
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Distance 

• Metrics have a formal definition: 
– d(x, y) ≥ 0    
– d(x, y) = 0   if and only if   x = y     
– d(x, y) = d(y, x)  
– Triangle inequality:  

 d(x, z) ≤ d(x, y) + d(y, z) 
• The triangle inequality need not hold for a 

measure of “similarity.” 
• Distance ~ Dissimilarity = 1 - similarity 
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Distance Metrics 
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Can we capture the similarity of 
these patterns? 
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Pearson Correlation 
• Xi,j = Expression of gene i in condition j 
• Zi = z-score of gene i one experiment: 
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Pearson Correlation 
• Xi,j = Expression of gene i in condition j 
• Zi = z-score of gene i one experiment: 

 
• Pearson correlation 

 
 
– from +1 (perfect correlation) to -1 (anti-correlated) 

• Distance = 1-rA,B 

 

over all experiments 
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Distance Metrics 
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Missing Data 

• What if a particular data point is missing?  
(Back in the old days: there was a bubble or a 
hair on the array) 
– ignore that gene in all samples 
– ignore that sample for all genes 
– replace missing value with a constant 
– “impute” a value  

• example:  compute the K most similar genes (arrays) 
using the available data;  set the missing value to the 
mean of that for these K genes (arrays) 
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Outline 

• Bayesian Networks for PPI prediction 
• Gene expression 

– Distance metrics 
– Clustering 
– Signatures 
– Modules 

• Bayesian networks 
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• Mutual Information 
• Evaluation on real and simulated data 
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Clustering 

• Intuitive idea that we want to find an 
underlying grouping 

• In practice, this can 
be hard to define and 
implement. 

• An example of unsupervised learning 

41



Unsupervised Learning 

© Netflix, Inc. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Clustering 8600 human genes based on time course 
of expression following 

serum stimulation of fibroblasts 

Iyer et al. Science 1999 

Ge
ne

s 

Key:  Black = little change   Green = down   Red = up 

(relative to initial time point)   

(A) cholesterol biosynthesis 

(B) the cell cycle 

(C) the immediate-early response 

(D) signaling and angiogenesis  

(E) wound healing and tissue remodeling 

© American Association for the Advancement of Science. All rights reserved. This content is excluded

from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Iyer, Vishwanath R., Michael B. Eisen, et al. "The Transcriptional Program in the Response

of Human Fibroblasts to Serum." Science 283, no. 5398 (1999): 83-7.
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Why cluster? 

• Cluster genes (rows) 
– Measure expression at multiple time-points, different 

conditions, etc.  
 

 

• Cluster samples (columns) 
– e.g., expression levels of thousands of genes for each 

tumor sample 

 

Similar expression patterns may suggest similar functions of genes  

Similar expression patterns may suggest biological relationship 
among samples 
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Hierarchcial clustering 

Two types of approaches:  
•Agglomerative 
•Divisive 

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Agglomerative Clustering Algorithm 
• Initialize: Each data point is in its own cluster 
• Repeat until there is only one cluster: 

– Merge the two most similar clusters. 

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Agglomerative Clustering Algorithm 

• Initialize: Each data point is in its own cluster 
• Repeat until there is only one cluster: 

– Merge the two most similar clusters. 

If distance is defined for a 
vector, how do I compare 
clusters? 

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Clusters Y, Z with A in Y and B in Z 
• Single linkage = min{dA,B} 
• Complete linkage = max{dA,B} 
• UPGMC (Unweighted Pair Group 

Method using Centroids 
 
 
– Define  distance as  

• UPGMA (Unweighted Pair Group 
Method with Arithmetic Mean) 
average of pairwise distances: 

 

B 
Z 

A 
Y 
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• Single linkage = min{dA,B} 
• Complete linkage = max{dA,B} 
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• If clusters exist and are compact, it should not 
matter. 

• Single linkage will “chain” together groups 
with one intermediate point. 

• Complete linkage will not combine two groups 
if even one point is distant. 
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Interpreting the Dendogram 
• This produces a binary tree or 

dendrogram 
• The final cluster is the root and 

each data item is a leaf 
• The heights of the bars indicate 

how close the items are 
• Can ‘slice’ the tree at any 

distance cutoff to produce 
discrete clusters 

• Dendogram represents the 
results of the clustering; its 
usefulness in representing the 
data is mixed. 

• The results will always be 
hierarchical, even if the data are 
not. 
 

Data items (genes, etc.) 

Di
st

an
ce
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K-means clustering 
• Advantage:  gives sharp partitions of the data 
• Disadvantage:  need to specify the number of 

clusters (K). 
• Goal:  find a set of k clusters that minimizes 

the distances of each point in the cluster to 
the cluster mean: 
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K-means clustering algorithm 
• Initialize: choose k points as cluster means 
• Repeat until convergence:  

– Assignment:  place each point Xi in the cluster 
with the closest mean. 

– Update: recalculate the mean for each cluster 
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What if you choose the wrong K? 
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Big steps occur when we are dividing 
data into natural clusters 

Smaller steps occur 
when we are 
overclustering 
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What if we choose pathologically 
bad initial positions? 
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What if we choose pathologically 
bad initial positions? 

Often, the algorithm gets a 
reasonable answer, but not always! 

72



Convergence 
• K-means always converges. 
• The assignment and update steps always 

either reduce the objective function or leave it 
unchanged. 
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Convergence 

• However, it doesn’t always find the same 
solution. 

? 

K=2 
74



Fuzzy K-means 

K=2 
75



K-means 
• Initialize: choose k 

points as cluster means 
• Repeat until 

convergence:  
– Assignment:  place each 

point Xi in the cluster 
with the closest mean. 
 

– Update: recalculate the 
mean for each cluster 

Fuzzy k-means 
• Initialize: choose k 

points as cluster means 
• Repeat until 

convergence:  
– Assignment:  calculate 

probability of each point 
belonging to each 
cluster. 

– Update: recalculate the 
mean for each cluster 
using these probabilities 
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K-means Fuzzy k-means 

= membership of point j in cluster i 
Larger values of r make the clusters 
more fuzzy. 
 

Relationship to EM and Gaussian mixture models 77



Example of Fuzzy K-means 

  Olsen, et al. (2006) Cell.  doi:10.1016/j.cell.2006.09.026  

Source: Olsen, Jesper V., Blagoy Blagoev, et al. "Global, In Vivo, and Site-specific

Phosphorylation Dynamics in Signaling Networks." Cell 127, no. 3 (2006): 635-48.

78
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Limits of k-means 

K-means uses Euclidean distance 
 
 
 

 
• Gives most weight to largest differences 
• Can’t be used if data are qualitative 
• Centroid usually does not represent any datum 
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K-means 
• Best clustering minimizes 

within-cluster Euclidean 
distance of from centroids 
 

K-medoids 
• Best clustering minimizes 

within-cluster dissimilarity 
from medoids (exemplar) 
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K-medoids clustering 

• Initialize: choose k points as cluster means 
• Repeat until convergence:  

– Assignment:  place each point Xi in the cluster 
with the closest medoid. 

– Update: recalculate the medoid for each cluster 
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Other approaches 

• SOM (Text 16.3) 
• Affinity Propagation   

– Frey and Dueck (2007) Science. 
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So What? 

• Clusters could reveal underlying biological 
processes not evident from complete list of 
differentially expressed genes 

• Clusters could be co-regulated.  How could we 
find upstream factors? 
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Personalized Medicine 

• Can gene expression be used for diagnosis and 
to determine the best treatment? 
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Distinct types of diffuse large B-cell lymphoma 
identified by gene expression profiling 

Nature 403, 503-511(3 February 2000) 

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Alizadeh, Ash A., Michael B. Eisen, et al. "Distinct Types of Diffuse Large B-cell

Lymphoma Identified by Gene Expression Profiling." Nature 403, no. 6769 (2000): 503-11.
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Alizadeh  et al.(2000)  Nature. 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Alizadeh, Ash A., Michael B. Eisen, et al. "Distinct Types of Diffuse Large B-cell

Lymphoma Identified by Gene Expression Profiling." Nature 403, no. 6769 (2000): 503-11.
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OS= the fraction of patients alive (overall survival) 
Hazard Ratio= Death rate vs. control 

post-prandial laughter  

Courtesy of Venet et al. License: CC-BY.

Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene

Expression Signatures are Significantly Associated with Breast Cancer

Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240.

88
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OS= the fraction of patients alive (overall survival) 
Hazard Ratio= Death rate vs. control 

social defeat in mice  

Courtesy of Venet et al. License: CC-BY.
Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene
Expression Signatures are Significantly Associated with Breast Cancer

Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240. 
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OS= the fraction of patients alive (overall survival) 
Hazard Ratio= Death rate vs. control 

post-prandial laughter  localization of skin fibroblasts  

67% 

77% 

social defeat in mice  

Courtesy of Venet et al. License: CC-BY.

Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene Expression Signatures are Significantly

Associated with Breast Cancer Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240.
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 Published Signature 

Distribution for random signatures 

                       Best 5% of random signatures 

Courtesy of Venet et al. License: CC-BY.

Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene

Expression Signatures are Significantly Associated with Breast Cancer

Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240.

92

http://dx.doi.org/10.1371/journal.pcbi.1002240
http://dx.doi.org/10.1371/journal.pcbi.1002240
http://dx.doi.org/10.1371/journal.pcbi.1002240


Hazard Ratio= 
Death rate vs. control 

PCNA metagene = 1% genes the most positively correlated with expression of PCNA 
(proliferating cell nuclear antigen, a known marker) across 36 tissues 

Courtesy of Venet et al. License: CC-BY.

Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene

Expression Signatures are Significantly Associated with Breast Cancer

Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240.
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Outline 

• Bayesian Networks for PPI prediction 
• Gene expression 

– Distance metrics 
– Clustering 
– Signatures 
– Modules 

• Bayesian networks 
• Regression 
• Mutual Information 
• Evaluation on real and simulated data 
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Reconstructing Regulatory Networks 

Courtesy of Elsevier B.V. Used with permission.

Source: Sumazin, Pavel, Xuerui Yang, et al. "An Extensive

MicroRNA-mediated Network of RNA-RNA Interactions

Regulates Established Oncogenic Pathways in

Glioblastoma." Cell 147, no. 2 (2011): 370-81.
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Clustering vs. “modules” 
• Clusters are purely phenomenological – no 

claim of causality 
• The term “module” is used to imply a more 

mechanistic connection 

Transcription 
factor A 

Transcription 
factor B 

Correlated expression 
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Wisdom of crowds for robust gene network inference 
Nature Methods 9, 796–804 (2012) doi:10.1038/nmeth.2016  

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for

Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
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Wisdom of crowds for robust gene network inference 
Nature Methods 9, 796–804 (2012) doi:10.1038/nmeth.2016  

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for

Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.

99

http://dx.doi.org/10.1038/nmeth.2016
http://dx.doi.org/10.1038/nmeth.2016


Outline 
• Bayesian Networks for PPI prediction 
• Gene expression 

– Distance metrics 
– Clustering 
– Signatures 

–Modules 
• Bayesian networks 
• Regression 
• Mutual Information 
• Evaluation on real and simulated data 
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Bayesian Networks 

A “natural” way to think about 
biological networks. 
 
 

Predict unknown variables from 
observations 
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Is the p53 pathway activated? 

Courtesy of Looso et al. License: CC-BY.

Source: Looso, Mario, Jens Preussner, et al. "A De Novo Assembly of the Newt Transcriptome Combined with Proteomic

Validation Identifies New Protein Families Expressed During Tissue Regeneration." Genome Biology 14, no. 2 (2013): R16.
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Is the p53 pathway activated? 
Possible Evidence 

•Known p53 targets are up-regulated 

•Could another pathway also cause this? 

•Genes for members of signaling pathway are 
expressed (ATM, ATR, CHK1, …) 

•Might be true under many conditions 
where pathway has not yet been activated 

•Genes for members of signaling pathway are 
differentially expressed  

•Still does not prove change in activity 
Courtesy of Looso et al. License: CC-BY.

Source: Looso, Mario, Jens Preussner, et al. "A De Novo Assembly of the Newt Transcriptome Combined with Proteomic

Validation Identifies New Protein Families Expressed During Tissue Regeneration." Genome Biology 14, no. 2 (2013): R16.
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• Formulate problem probabilistically 
• Compute  

– P(p53 pathway activated| data) 

• How? 
– Relatively easy to compute p(X up | TF up) 
– How? 

Is the p53 pathway activated? 

TF 

X1 X2 X3 104



• Formulate problem probabilistically 
• Compute  

– P(p53 pathway activated| data) 
• How? 

– Relatively easy to compute p(X up | TF up) 
– Look over lots of experiments and tabulate: 

• X1 up & TF up 
• X1 up & TF not up 
• X1 not up & TF not up 
• X1 not up & TF up 

Is the p53 pathway activated? 

TF 

X1 X2 X3 105



• Formulate problem probabilistically 
• Compute  

– P(p53 pathway activated| data) 

• How? 
– Relatively easy to compute p(X up | TF up) 
– P(TF up|X up) = p(X up | TF up) p(TF up)/p(X up) 

Is the p53 pathway activated? 

TF 

X1 X2 X3 106



• Formulate problem probabilistically 
• Compute  

– P(p53 pathway activated| data) 

• How? 
– Even with p(TF up | X up) how do we compare this 

explanation of the data to other possible 
explanations? 

– Can we include upstream data? 

Is the p53 pathway activated? 

TF 

X1 X2 X3 107



Application to Gene Networks 

TF A2 TF B2 

TF A1 TF B1 •Which pathway activated 
this set of genes? 
•Either A or B or both would 
produce similar but not 
identical results. 
 
•Bayes Nets estimate 
conditional probability tables 
from lots of gene expression 
data.   

•How often is TF B2 
expressed when TF B1 is 
expressed, etc.  

108



“Explaining Away” Season 

S 
Sprinkler 

R 
Rain 

Grass  
wet 

Does the probability that it’s raining 
depend on whether the sprinkler is on? 
  

Slippery 

 
In a causal sense, clearly not.   
 
But in a probabilistic model, 
the knowledge that it is 
raining influences our beliefs.  
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Application to Gene Networks 
Transcription 

factor A 
Transcription 

factor B 

Multi-layer networks are possible, 
but feedback is not 
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Learning Models from Data 

• Searching for the BN structure:  NP-complete 
– Too many possible structures to evaluate all of 

them, even for very small networks. 
– Many algorithms have been proposed 
– Incorporated some prior knowledge can reduce 

the search space.   
• Which nodes should regulate transcription?   
• Which should cause changes in phosphorylation? 

– Intervention experiments help 
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 K.  Sachs et al.,  Science  308, 523 -529 (2005)     

 
 
 

• Without interventions, all we can say is that  
X and Y are correlated 

• Interventions allow us to determine which is 
the parent. 

© American Association for the Advancement of Science. All rights reserved. This content is excluded

from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sachs, Karen, Omar Perez, et al. "Causal Protein-signaling Networks Derived From

Multiparameter Single-cell Data." Science 308, no. 5721 (2005): 523-9.
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 K.  Sachs et al.,  Science  308, 523 -529 (2005)     

Fig. 1. Bayesian network modeling with single-cell data 

If we don’t measure “Y” can 
we still model the data? 
The relationship of X and Z,W 
will be noisy and might be 
missed. 

© American Association for the Advancement of Science. All rights reserved. This content is excluded

from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sachs, Karen, Omar Perez, et al. "Causal Protein-signaling Networks Derived From

Multiparameter Single-cell Data." Science 308, no. 5721 (2005): 523-9.
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Outline 
• Bayesian Networks for PPI prediction 
• Gene expression 

– Distance metrics 
– Clustering 
– Signatures 

–Modules 
• Bayesian networks 
• Regression 
• Mutual Information 
• Evaluation on real and simulated data 
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Assume that expression of gene Xg is some function of the 
expression of its transcription factors  
Xi = measured expression of i-th gene 
XTi = measured expression of a set of TFs potentially 
regulating gene i 
fg is an arbitrary function 
ϵ is noise  

Regression-based models   

Predicted expression : ( )g g TgY f X ε= +

{ , }Tg t gX X t T= ∈

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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BMC Syst Biol. 2012 Nov 22;6:145. doi: 10.1186/1752-0509-6-145. 
TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. 

fg is frequently assumed to be a linear function 
The values of the βt,g reflect the influence of each TF on 
gene g 

Regression-based models 

,( )
g

g Tg t g t
t T

f X Xβ
∈

= ∑

How do we discover the values of the βt,g ? 
 

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Define an objective function: 
Sum over M training data sets and N genes 
Find parameters that minimize “residual sum of 
squares” between observed (X) and predicted (Y) 
expression levels. 
 

Regression-based models 
,

g

g t g t
t T

Y Xβ ε
∈

= +∑

2
, ,

1 1
( )

M N

i j i j
j i

RSS X Y
= =

= −∑∑
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Problems: 
Standard regression will produce many very small values of 
β, which makes interpretation difficult 
β values can be unstable to changes in training data 
Solutions: 
Subset Selection and Coefficient Shrinkage 

•see Section 3.4 of Hastie Tibshirani and Friedman 
“The elements of statistical learning” for  general approaches and 
“TIGRESS: Trustful Inference of Gene REgulation using Stability 
Selection” for a successful DREAM challenge doi: 10.1186/1752-
0509-6-145. 

 
 

Regression-based models 
,

g

g t g t
t T

Y Xβ ε
∈

= +∑
2

, ,
1 1

( )
M N

i j i j
j i

RSS X Y
= =

= −∑∑
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Outline 
• Bayesian Networks for PPI prediction 
• Gene expression 

– Distance metrics 
– Clustering 
– Signatures 

–Modules 
• Bayesian networks 
• Regression 
• Mutual Information 
• Evaluation on real and simulated data 
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Quick Review of Information Theory 
 

( ) ( )2
1logI E

P E
=

Rare letters have higher information content 

Information content 
of an event E 

© Califon Productions, Inc. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Quick Review of Information Theory 
 

( ) ( )2
1logI E

P E
=

( ) 2
1( ) logi i i

i i i

H S p I s p
p

= =∑ ∑

Information content 
of an event E 

Entropy is evaluated 
over all possible 
outcomes 
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Mutual Information 

• Does knowing variable X reduce the uncertainty 
in variable Y? 

• Example: 
– P(Rain) depends on P(Clouds) 
– P(target expressed) depends on P(TF expressed) 

 
 

• I(x,y) = 0 means variables are independent 
• Reveals non-linear relationships that are missed 

by correlation. 
 

( ), ( ) ( ) ( , )I x y H x H y H x y= + −
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Mutual information detects 
 non-linear relationships 

A 

B 

C 

Correlation coefficient = -0.0464 

Mutual information = 1.7343 

Incoherent feed-forward loop (FFL) 

No correlation, but knowing A reduces the 
uncertainty in the distribution of B 

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Mutual information detects 
 non-linear relationships 

• Complex regulatory 
network structure => 
complex 
relationships 
between protein 
levels 

• Example: incoherent 
feed-forward loop 
(FFL) © source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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ARACNe 

125



ARACNe 

• Find TF-target relationships using mutual 
information 
 

• How do you recognize a significant value of 
MI? 
– randomly shuffle expression data 
– compute distribution of Mutual information 
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ARACNE 

• Data processing inequality 
– Eliminate indirect interactions 
– If G2 regulates G1,G3 

 I(G1,G3)>0 but adds no insight 
– Remove edge with smallest 

mutual information in 
each triple 
 

G2 

G1 G3 
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MINDy 

• Identify proteins that modulate TF function  
– Other TFs 
– Kinases 
– etc 
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Model 

• Assumes that expression of target T is 
determined by TF and modulator (M) 
 

Modulator present at highest levels 
Modulator present at lowest levels 
-> Suggests M is an activator 
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Genome-wide identification of post-translational modulators of transcription factor activity in human B cells 
Kai Wang, Masumichi Saito, Brygida C Bisikirska, Mariano J Alvarez, Wei Keat Lim, Presha Rajbhandari, Qiong Shen, Ilya Nemenman, Katia Basso, Adam A 
Margolin, Ulf Klein, Riccardo Dalla-Favera & Andrea Califano 
Nature Biotechnology 27, 829 - 837 (2009) Published online: 9 September 2009 
doi:10.1038/nbt.1563 

Filters 
1. expression of the 

modulator and of the 
TF must be statistically 
independent  

2. the modulator 
expression must have 
sufficient range  

3. may be filtered by 
additional criteria—for 
example, molecular 
functions.  

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Wang, Kai, Masumichi Saito, et al. "Genome-wide Identification of Post-

translational Modulators of Transcription Factor Activity in Human B cells."

Nature Biotechnology 27, no. 9 (2009): 829-37.
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Genome-wide identification of post-translational modulators of transcription factor activity in human B cells 
Kai Wang, Masumichi Saito, Brygida C Bisikirska, Mariano J Alvarez, Wei Keat Lim, Presha Rajbhandari, Qiong Shen, Ilya Nemenman, Katia Basso, Adam A 
Margolin, Ulf Klein, Riccardo Dalla-Favera & Andrea Califano 
Nature Biotechnology 27, 829 - 837 (2009) Published online: 9 September 2009 
doi:10.1038/nbt.1563 

Estimate conditional mutual information 
Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Wang, Kai, Masumichi Saito, et al. "Genome-wide Identification of Post-

translational Modulators of Transcription Factor Activity in Human B cells."

Nature Biotechnology 27, no. 9 (2009): 829-37.
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Note than none of 
these curve 
saturate 

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Wang, Kai, Masumichi Saito, et al. "Genome-wide Identification of Post-

translational Modulators of Transcription Factor Activity in Human B cells."

Nature Biotechnology 27, no. 9 (2009): 829-37.
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What regulates MYC? 

Input:   
 254 expression profiles in B cells  
 (normal and tumor) 
 various sets of candidate regulators 
Evaluation:  
 1. comparison to known modulators 
 2. experimental tests of four candidates 
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What regulates MYC? 

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Wang, Kai, Masumichi Saito, et al. "Genome-wide Identification of Post-

translational Modulators of Transcription Factor Activity in Human B cells."

Nature Biotechnology 27, no. 9 (2009): 829-37.
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Limitations 

• Need huge expression datasets 
• Can’t find: 

– modulator that do not change in expression 
– modulator that are highly correlated with target 
– modulators that both activate and repress 
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Huge networks! 

 This is just the 
nearest 
neighbors of 
one node of 
interest from 
ARACNe! 
Nature 
Medicine 18, 436–
440 (2012) doi:10.1038/n
m.2610 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Della Gatta, Giusy, Teresa Palomero, et al. "Reverse Engineering of TLX

Oncogenic Transcriptional Networks Identifies RUNX1 as Tumor Suppressor
in T-ALL." Nature Medicine 18, no. 3 (2012): 436-40.
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Huge networks! 

 Conditional MI 
network of miR 
modulators 
248,000 
interactions 
http://www.sciencedirect.com/scienc
e/article/pii/S0092867411011524 

Courtesy of Elsevier B.V. Used with permission.
Source: Sumazin, Pavel, Xuerui Yang, et al. "An Extensive MicroRNA-mediated Network

of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma." 

Cell 147, no. 2 (2011): 370-81.

137

http://www.sciencedirect.com/science/article/pii/S0092867411011524�
http://www.sciencedirect.com/science/article/pii/S0092867411011524�
http://dx.doi.org/10.1016/j.cell.2011.09.041
http://dx.doi.org/10.1016/j.cell.2011.09.041


MINDy modulators 

Potential Modulators 

Source of 
targets  

Signaling 
(542) 

TFs  
(598) 

Any 
(3,131) 

Database 91 99 
ARACNe 80 85 

ALL [25/296] [32/296] 296 

MINDy selects between 10-20% of candidates! 
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Outline 
• Bayesian Networks for PPI prediction 
• Gene expression 

– Distance metrics 
– Clustering 
– Signatures 

–Modules 
• Bayesian networks 
• Regression 
• Mutual Information 
• Evaluation on real and simulated data 

 

139



140



Wisdom of crowds for robust gene network inference 
Nature Methods 9, 796–804 (2012) doi:10.1038/nmeth.2016  

Ar
ea

 u
nd

er
 p

re
ci

si
on

-r
ec

al
l c

ur
ve

 
AUPR = area under precision-recall curve 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust

Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
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Wisdom of crowds for robust gene network inference 
Nature Methods 9, 796–804 (2012) doi:10.1038/nmeth.2016  
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AUPR = area under precision-recall curve 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust

Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
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Wisdom of crowds for robust gene network inference 
Nature Methods 9, 796–804 (2012) doi:10.1038/nmeth.2016  

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust

Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
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Wisdom of crowds for robust gene network inference 
Nature Methods 9, 796–804 (2012) doi:10.1038/nmeth.2016  

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for

Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
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Wisdom of crowds for robust gene network inference 
Nature Methods 9, 796–804 (2012) doi:10.1038/nmeth.2016  
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for

Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
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Wisdom of crowds for robust gene network inference 
Nature Methods 9, 796–804 (2012) doi:10.1038/nmeth.2016  

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust

Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
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Wisdom of crowds for robust gene network inference 
Nature Methods 9, 796–804 (2012) doi:10.1038/nmeth.2016  

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for

Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
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Thoughts on Gene Expression Data 

• Useful for classification and clustering 
• Not sufficient for reconstructing regulatory 

networks in yeast 
• Can we infer levels of proteins from gene 

expression? 
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1,

000 fold range 
of

 protein 
c

oncentrations 
 

Raquel de Sousa Abreu, Luiz Penalva, Edward Marcotte and Christine Vogel,  Mol. BioSyst., 2009  DOI: 10.1039/b908315d 

Approach 
mRNA levels do not predict protein levels 

 

mRNA expression levels  
(arbitrary units, log-scale base 10) 
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Kang Ning, Damian Fermin, and Alexey I. Nesvizhskii J Proteome Res. 2012 April 6; 11(4): 2261–2271. 

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: de Sousa Abreu, Raquel, Luiz O. Penalva, et al. "Global Signatures of Protein and

mRNA Expression Levels." Molecular Biosystems 5, no. 12 (2009): 1512-26.

Source: Ning, Kang, Damian Fermin, et al. "Comparative Analysis of Different Label-free Mass

Spectrometry Based Protein Abundance Estimates and Their Correlation with RNA-Seq

Gene Expression Data." Journal of Proteome Research 11, no. 4 (2012): 2261-71.
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Nature. 2011 May 19;473(7347):337-42. doi: 10.1038/nature10098. 
Global quantification of mammalian gene expression control. 
Schwanhäusser B1, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. 

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Schwanhäusser, Björn, Dorothea Busse, et al. "Global Quantification of

Mammalian Gene Expression Control." Nature 473, no. 7347 (2011): 337-42.
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• L12 - Introduction to Protein Structure; 
Structure Comparison & Classification     

• L13 - Predicting protein structure  
• L14 - Predicting protein interactions  
• L15 - Gene Regulatory Networks  
• L16 - Protein Interaction Networks  
• L17 - Computable Network Models  
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