4-23 Recitation

Prof. Gifford L18
Analysis of Chromatin Structure



Announcements

* Problem Set 5 due next Thursday (May 1Y)

e 2 more lectures from Prof. Gifford (including
today), then 2 guest lectures - Ron Weiss from
MIT (Synthetic Bio), George Church from
Harvard (Genome Engineering & Systems
Biology)

e 2nd exam — Tuesday, May 6t



Outline

Chromatin Structure
Dynamic Bayesian Networks / Segway

DNAse-seq & Protein Interaction Quantitation

(P1Q)

ChIA-PET reveals 3D interactions in the genome



Introduction to Chromatin

* DNAinone cell is 3 meters long, yet fits into a tiny nucleus

* To facilitate the packaging, DNA is wrapped around nucleosomes,
and this fiber is wrapped into higher order structures up to the level

of a chromosome
— “chromatin” refers to the structure of DNA + nucleosomes

— Each nucleosome is an octamer composed of 4 pairs of different histone proteins: H2A,
H2B, H3, and H4

© Pearson Education, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/i.
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Histone modifications

— Particular residues on the tails of these histones commonly undergo
post-translational chemical modifications

http://a.static-abcam.com/CmsMedia/|
Media/common-histone-modification-1.jpg

© Abcam| All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/].

— Some of these modifications are associated with functions — different
combin:ﬁionsyof marks and their meaning compose the “histone code”

Histone modification Signal Putative functions
or variant characteristics
H2A.Z Peak Histone protein variant (H2A.Z) associated with regulatory elements with dynamic chromatin
H3K4mel Peak/region Mark of regulatory elements associated with enhancers and other distal elements, but also enriched downstream of transcription starts
M OSt H3K4me2 Peak Mark of regulatory elements associated with promoters and enhancers
—_— H3K4me3 Peak Mark of regulatory elements primarily associated with promoters/transcription starts
H3K9ac Peak Mark of active regulatory elements with preference for promoters
common H3K9mel Region Preference for the 5’ end of genes
. H3K9me3 Peak/region Repressive mark associated with constitutive heterochromatin and repetitive elements
N pa pe rs 3 H3K27ac Peak Mark of active regulatory elements; may distinguish active enhancers and promoters from their inactive counterparts
H3K27me3 Region Repressive mark established by polycomb complex activity associated with repressive domains and silent developmental genes
H3K36me3 Region Elongation mark associated with transcribed portions of genes, with preference for 3’ regions after intron 1
H3K79me2 Region Transcription-associated mark, with preference for 5’ end of genes
H4K20mel Region Preference for 5’ end of genes

ENCODE Consortium Nature 2012
Courtesy of Macmillan Publishers Limited. Used with permission.
Source: ENCODE Project Consortium. "An Integrated Encyclopedia of DNA Elements in the Human Genomel.“ Nature 489, no. 7414 (2012): 57-74.
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Histone code & DNA methylation regulate gene expression

* In addition to histone modifications, gene
expression can be affected by DNA methylation:
the 5 carbon of cytosines in DNA can be
methylated.

— In metazoans, only C’'s before G’s can be methylated
(the C’'s of CpG). Hundred or thousands of base-long
stretches rich in methylated cytosines form “CpG
islands” at some promoters to repress gene expression

 “Epigenetic” changes are changes to DNA not at
the level of primary sequence which are
reversible & heritable

* Epigenetic marks are often cell-type and/or
disease state-specific
— For example, the pluripotency gene Nanog is
demethylated during reprogramming of differentiated
cells into iPSCs

* Enzymes actively regulate the epigenetic marks

— Chromatin modifiers and nucleosome remodelers are enzymes
that actively regulate chromatin marks, nucleosome positioning &
turnover

— DNA methyltransferases to methylate DNA

Courtesy of Macmillan Publishers Limited. Used with permission.


http://dx.doi.org/10.1038/441143a

Profiling histone modifications

ChIP-seq w/ antibodies specific to a particular type of modified
nucleosome can map histone modifications genome-wide

We'd like to come up with a way to combine these
combinations of histone marks throughout the genome into

functional annotations
. Based on an observed pattern of marks at a locus, we’d like to label it w/
‘enhancer’, ‘promoter’, ‘inactive’ or ‘active gene body region’, etc.

2 approaches to functional annotation of the genome:

- Hidden Markov Model (ChromHMM)
- Dynamic Bayesian Network (Segway)



Dynamic Bayesian Networks

* A Bayesian network (directed graphical model where arcs/
edges represent conditional dependencies) that models a
dynamic process (sequential data, either temporal or spatial —
e.g. along the genome)

e Similar to Hidden Markov Models, but include additional
random variables that allow tuning (e.g., hard limits on
segment lengths)



Segway: Dynamic Bayesian Network
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Black arcs (edges) = deterministic conditional
dependence, red = stochastic conditional
dependence

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/i.

Variable’s parents are
indicated by its direct
predecessor in the directed
graph

Every variable is conditionally
independent of all variables in
the model given its parents

n observation tracks
T: sequence length

Square: discrete random
variable

Circle: continuous random
variable

White: hidden variable
Black: observed variable
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Segway: Dynamic Bayesian Network
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Observation track: assay output (e.g., density of H3K4mé3!""”
ChIP-seq reads — one track for each of n experiments)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use,{.

Segment label: The hidden
annotation you’re trying to
infer (e.g. promoter).

Indicator: 1/0 whether or not
the assay produced any results
for that region (=0 if assay
can’t map reads to that region.
In this case, the edge from Q,
to X! is edited out)


http://ocw.mit.edu/help/faq-fair-use/

Segway: Dynamic Bayesian Network

]
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/|.

iel1,n]

Ruler marker:

=1 every 10t position, 0
otherwise (every 10t position,
we update the countdown
variable as to how long we’ve
been in that label)

Countdown: Discrete variable
that allows the specification of
minimum or maximum
segment length. Starts at initial
value dependent on Q; (might
want TSS to be short but
intergenic region to be long)
and decreases where ruler
marker M;=1.
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Segway: Dynamic Bayesian Network
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/|.

iel1,n]

Transition: binary segment
transition label that either
forces the segment label to
change at the current position
(J,=1) or prevent it from
changing (J,=0).

Segway generates a
conditional probability table
P(J,=1|Q,,,C, ) that maps each
(Q,.1,C, ;) to one of three rules
that determine the value of J;:

1. Force: P(J,=1) =1
2. Prevent: P(J;=1) =0
3. Allow: P(J,=1)=1/(1+L)

“Allow” rule models
geometric distribution w/
expected length L


http://ocw.mit.edu/help/faq-fair-use/

Segway: Dynamic Bayesian Network

e Train on 1% of the Genome

— Assign equal probability (=1/n) of each label to the starting position, then use
Expectation-Maximization (EM) algorithm to learn model parameters
(contributions of each track (experimental assay) to each label)

— Starting from different initial conditions (i.e., contributions of each track to a
particular label) gave similar results

 Then use these parameters to segment the rest of the genome
using Viterbi decoding (similar to what we discussed for HMMs)

13



Example of Segway’s segmentation for a gene

Window position Human Mar. 2006 (NCBI36/hg18) chr6:33044414-33057260 (12,847 bp)
Scale 5kb | |
Chré: | 33046000 | 33047000 | 33048000 | 33049000 | 33050000 | 33051000 | 33052000 | 33053000 | 33054000 | 33055000 | 33056000 | 33057000 |

Segway 31-track chromatin segmentation (K562)
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/|.

-Arbitrarily chose there to be 25 labels (so that they would remain interpretable by biologists)
The authors gave names to the resulting 25 labels:
D: “dead” — no activity
GS: gene start
GM: gene middle
GE: gene end
E: enhancer
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Transcription Factor Binding

Many more possible binding sites in genome than are actually occupied
Binding sites are different in cell types and across time

Motifs are insufficient to
predict binding

Binding sites change across

~50,000 binding sites time

for a typical TF
Tcf7I12 Chi P-Seq —

pypr v R\

~650,000
TF Motifs

mES only Endoderm only
7,633 14,837

Both_ :
1,468 NS>
(16%)

crrre. CI[[GA: . _cTTTGA,.

One key determinant of whether or not a TF binds is the local chromatin
landscape: is the DNA accessible?



Dnase-seq reveals protected regions
of the genome

 DNase-l cleaves at unprotected regions
— Regions of open chromatin
— Not wrapped around nucleosomes or bound strong by TFs

@&; 7@@/57@@@@@ — “:;‘5 S
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Digest nuclei with DNase-| _
Collect DNA, size

(concentration/exposure specific) separate (175 — 400bp)
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Sequence (60-100M reads)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/].
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Protein Interaction Quantitation (P1Q)

* Predicts TF binding from DNase-seq + sequence motif
preferences of TFs

Input: . .||I“I||“| |.|‘||||I|m|| .|IIII|I| ||| |III|||||I 11

CTGCCGTACGTACCGCCTACCTAATAGCT. I - GAATGCGATA TT C TZCAGTGCTAAACGCTTCCCCAAGTCTAGACGTAATT

/ N

Modeling: Ih””“h h|||”h|n| ; ol ‘ J

Predictions: S0 w—R—

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Sherwood, Richard I., Tatsunori Hashimoto, et al. "Discovery of Directional and Nondirectional Pioneer]
Transcription Factors by Modeling DNase Profile Magnitude and Shape|" Nature Biotechnology 32, no. 2 (2014): 171-8.

* (Can get predictions for hundreds of TFs (need a motif for that
TF) —no need for antibodies specific to proteins


http://dx.doi.org/10.1038/nbt.2798
http://dx.doi.org/10.1038/nbt.2798
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3 Steps of PIQ algorithm

1. Identification of candidate sites using TF motifs from TF
databases

2. Smoothing of raw reads from each DNase-seq experiment.
DNase-seq reads are modeled as arising from a Gaussian process to
remove noise by adaptively smoothing the reads from nelghbormg
bases :

| allll III || Ill

3. Identify binding sites of TF by iteratively combining dlrect
evidence of binding (DNase-seq) with computer-generated model
of DNasel hypersensitivity that includes that event (uses TF-
signature profile shapes and magnitudes for each TF to build a
model of the expected DNasel hypersensitivity)

Use log-likelihood ratio to test each region for TF binding, calling
those above 1% of null distribution as binary “bound” regions

400

500



Pioneer Transcription Factors

* Region of “closed” chromatin that’s inaccessible to most
TFs can be opened by pioneer TF binding

Pioneer transcription
factors

)

1 - independent
nucleosome/chromatin binding

2 - precedes other factors binding

Zaret 2011
© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/{.
Source: Zaret, Kenneth S., and Jason S. Carroll. "Pioneer Transcription Factors: Establishind
Competence for Gene Expression|." Genes & Development 25, no. 21 (2011): 2227-41.

* Then once chromatin is opened, other “settler” TFs can
bind

19


http://dx.doi.org/10.1101/gad.176826.111
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ldentification of Pioneer TFs

* Apply PIQ to a developmental lineage model that
involves stepwise differentiation of mouse stem cells

— Collect DNase-seq data at six-cell states at different timepoints

“Pioneer index” measures motif-specific expected increase in DNasel
accessibility at sites whose binding changes at successive timepoints

— Most motifs showed little pioneer activity, while a small number of motifs
(TFs) open chromatin substantially upon binding

a
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Wnt* + Activin ty . 0, 80, S
v 100 A 9 IS ST
Mesendoderm s \ (il J
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Bmp 80 <l < ‘l'
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Bmp™" ||| &
P v 60 é t1 45k 4k ¢
Mesoderm Endoderm N < w_l'
(day 5) (day 5) ~ 40 4 8 2 W
Act -5 o) w — e}
Wnt A + Bmp = o < © ;)
+ Tgfp™ 2 20 u o> o 2
y g O <= ZN X
Intestinal Prep:né:reatic Z o | | | . stllonen o o g .
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Sherwood, Richard I., Tatsunori Hashimoto, et al. "Discovery of Directional and Nondirectional Pioneer]
Transcription Factors by Modeling DNase Profile Magnitude and Shape|." Nature Biotechnology 32, no. 2 (2014): 171-8.

— Settler TFs can bind once pioneers have opened the chromatin; loss of pioneer
binding causes chromatin to return to a closed state

20
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Asymmetrical chromatin opening by
directional pioneers

* For non-palindromic motifs (e.g. AATTCG), we know which

strand (+/-) the motif is on and therefore in which direction
the TF is binding

* Some pioneer TFs tend to open chromatin more strongly in

one direction — could inform mechanisms of pathways how
TFs deposit histone marks

Creb1 Kif7 NFYA Zfp161

Chromatin Q)
opening Index

Motif Motif Motif Motif



3D structure of the genome & enhancer looping

* DNA is packaged tightly in 3D space in the nucleus

— This structure dictates which elements far apart on the genome (Mb away)
can physically interact due to close proximity in 3D space

* |Important for formation of promoter-enhancer interactions

— Enhancers: distal regulatory elements that, when bound by specific
TFs, enhance the expression of an associated gene

© Michael Speicher{ All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/i.

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Ong, Chin-Tong, and Victor G. Corces. "CTCF: An Architectural Protein|
Bridging Genome Topology and Function." Nature Reviews Genetics (2014).

http://www.science.ngfn.de/images/S31T04_fig1.JPq

22 http://www.nature.com/nrg/journal/v15/n4/images/nrg3663-f4.jpg]
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ChIA-PET reveals 3D interactions of the genome

Chromatin Interaction Analysis by Paired-End Tagging

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Fullwood, Melissa J., Mei Hui Liu, et al. "An Oestrogen-receptor-a-bound
Human Chromatin Interactome|" Nature 462, no. 7269 (2009): 58-64.

-Crosslink DNA & proteins, ChIP -Attach linkers w/ restriction - Perform restriction digest &
on protein of interest (e.g. RNA enzyme sites & perform ligation PCR amplify fragments, then
Pol I1), and shear DNA in dilute conditions to favor seguence

ligation within each complex

Two types of ligation events:

1. Self-ligation (e.g., both tags are
near the promoter) — these map
near each other on the genome &
we throw these out

2. Inter-ligation (e.g., 1 tag from
promoter & 1 from enhancer) reveal
interactions

Courtesy of Li et al. License: CC-BY.
Source: Li, Guoliang, Melissa J. Fullwood, et al. "Software ChIA-PET Tool for Comprehensive
Chromatin Interaction Analysis with Paired-end Tag Sequencing]." Genome Biology 11 (2010): R22

23 http://genomebiology.com/content/figures/gh-2010-11-2-r22-1-1.jpg| http://www.nature.com/nature/journal/v462/n7269/images/nature08497-f1.2.jpd
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ChlA-PET reveals 3D interactions of the genome

-ChlA-PET sequence tags that pair with tags from known promoter
regions reveal RNA Polll ChIP peaks that are at enhancer regions

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Mercer, Tim R., Stacey L. Edwards, et al. "DNase I-hypersensitive Exong
Colocalize with Promoters and Distal Regulatory Elementd." Nature Genetics (2013).

http://www.nature.com/ng/journal/v45/n8/images/ng.2677-F2.jpd


http://dx.doi.org/10.1038/ng.2677
http://dx.doi.org/10.1038/ng.2677
http://www.nature.com/ng/journal/v45/n8/images/ng.2677-F2.jpg
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Assessing significance of ChlA-PET interactions

Inter-ligation events (e.g. between a putative enhancer and
promoter) could arise from two sources

Courtesy of Li et al. License: CC-BY.
Source: Li, Guoliang, Melissa J. Fullwood, et al. "Software ChIA-PET Tool for Comprehensive|
Chromatin Interaction Analysis with Paired-end Tag Sequencing." Genome Biol 11 (2010): R22.

http://genomebiology.com/2010/11/2/R22/figure/F1

We need to assess if the inter-ligation events are significantly enriched for
having occurred from within the same cluster (true interaction events)


http://genomebiology.com/2010/11/2/R22
http://genomebiology.com/2010/11/2/R22
http://genomebiology.com/2010/11/2/R22/figure/F1

Assessing significance of ChlA-PET interactions

 Hypergeometric test for significance

— |, gt # Of inter-ligation events between loci A and B (paired-tags mapping to A
& B)

— C,, Cg: total number of ligation events associated with A, B (single tags
mapping to A or B)

— N: total number of ligation events (total single tags)

Probability of observing exactly your

CA N—ca
observed number of inter-ligation events (IA B) (CB—IA B)
under null hypothesis that each sticky end P(IA,B ’Na CA, CB) — ’ N ’
has an equal probability of ligating to any (CB>
other end:

min{ca,cp}

P-value is probability of your observation p = E P(Z‘N cA CB)
plus anything more extreme: ) 9
i:IA,B

26
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ChlA-PET has a high false negative rate

Due to heterogeneous starting population of cells (transient
promoter-enhancer interactions), complex protocol &
stringent P-values to cut down on false-positives, ChlA-PET
has a high false negative rate

So, given an a number of promoter-enhancer interactions
observed in ChlA-PET experiment 1 & in ChlA-PET experiment
2 with each capturing only a subset of the total events, we’d
like to estimate the true number of interactions occurring in

the cell
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Estimating the total number of events from overlap

* Again, we can use the hypergeometric model

— Given two observed sample sizes m & n along with their overlap k,
we’d like to estimate the total number events N

A

N = argmax |[P(X = k; N, m,n)]
N
— The maximum likelihood estimate of N is approximately:
A T

N(m,n, k) = .

— Example: Experiment 1: 100 events
Experiment 2: 200 events

- overlap is only 20. It seems like we must be sampling
only a small fraction of the total events each time!

- Indeed, maximum likelihood estimate is 1000 total events that
each sample came from
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Estimating the total number of events from overlap

 The previous model assumes all events were true positives,
while in reality some are false positives.

— We overestimate the total event count since the observed m
and n are larger than they truly are without the false positives

— Assume the overlapping events are true positives and the non-
overlapping events have false positive rate f (so 1-f of the
events are true positives). Then we can update estimates of m

and n: m — (1— f)(m —k)+k
n=01-f)(n—-k) +k
— With the previous example (100 and 200 events w/ 20
overlapping), let’s say there is a false positive rate of 5%. Then:
* m =(0.95)(80) + 20 =96
* n"=(0.95)(180) + 20 =191

* The modified estimate of the total # of events if therefore:
(96)(191)/20 = 869 (vs. 1000 without considering false-positives)
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