4-23 Recitation

Prof. Gifford L18 Analysis of Chromatin Structure

1

Announcements

- Problem Set 5 due next Thursday (May 1st)
- 2 more lectures from Prof. Gifford (including today), then 2 guest lectures - Ron Weiss from MIT (Synthetic Bio), George Church from Harvard (Genome Engineering & Systems Biology)
- 2nd exam Tuesday, May 6th

Outline

- Chromatin Structure
- Dynamic Bayesian Networks / Segway
- DNAse-seq & Protein Interaction Quantitation (PIQ)
- ChIA-PET reveals 3D interactions in the genome

Introduction to Chromatin

- DNA in one cell is 3 meters long, yet fits into a tiny nucleus
- To facilitate the packaging, DNA is wrapped around nucleosomes, and this fiber is wrapped into higher order structures up to the level of a chromosome
 - "chromatin" refers to the structure of DNA + nucleosomes
 - Each nucleosome is an octamer composed of 4 pairs of different histone proteins: H2A, H2B, H3, and H4

© Pearson Education, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of the Broad Institute. Used with permission. The most recent best practices can be found at this website: https://www.broadinstitute.org/gatk/guide/best-practices.

https://www.broadinstitute.org/files/news/images/2010/ 4 chromatin_states_2a.png http://www.mun.ca/biology/desmid/brian/BIOL2060/ BIOL2060-18/1820.jpg

Histone modifications

Particular residues on the tails of these histones commonly undergo post-translational chemical modifications

© Abcam. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

 Some of these modifications are associated with functions – different combinations of marks and their meaning compose the "histone code"

	Histone modification or variant	Signal characteristics	Putative functions
Most;	H2A.Z H3K4me1 H3K4me2 H3K4me3 H3K9ac	Peak Peak/region Peak Peak Peak Peak	Histone protein variant (H2A.Z) associated with regulatory elements with dynamic chromatin Mark of regulatory elements associated with enhancers and other distal elements, but also enriched downstream of transcription starts Mark of regulatory elements associated with promoters and enhancers Mark of regulatory elements primarily associated with promoters/transcription starts Mark of active regulatory elements with preference for promoters
common	H3K9me1 H3K9me3	Region Peak/region	Preference for the 5' end of genes
in papers	H3K27ac H3K27me3 H3K36me3 H3K79me2 H4K20me1	Peak Peak Region Region Region Region	Mark of active regulatory elements; may distinguish active enhancers and promoters from their inactive counterparts Repressive mark established by polycomb complex activity associated with repressive domains and silent developmental genes Elongation mark associated with transcribed portions of genes, with preference for 3' regions after intron 1 Transcription-associated mark, with preference for 5' end of genes Preference for 5' end of genes

ENCODE Consortium Nature 2012

Courtesy of Macmillan Publishers Limited. Used with permission. Source: ENCODE Project Consortium. "An Integrated Encyclopedia of DNA Elements in the Human Genome." *Nature* 489, no. 7414 (2012): 57-74.

Histone code & DNA methylation regulate gene expression

- In addition to histone modifications, gene expression can be affected by DNA methylation: the 5 carbon of cytosines in DNA can be methylated.
 - In metazoans, only C's before G's can be methylated (the C's of CpG). Hundred or thousands of base-long stretches rich in methylated cytosines form "CpG islands" at some promoters to repress gene expression
- "Epigenetic" changes are changes to DNA not at the level of primary sequence which are reversible & heritable
- Epigenetic marks are often cell-type and/or disease state-specific
 - For example, the pluripotency gene Nanog is demethylated during reprogramming of differentiated cells into iPSCs
- Enzymes actively regulate the epigenetic marks
 - Chromatin modifiers and nucleosome remodelers are enzymes that actively regulate chromatin marks, nucleosome positioning & turnover
 - DNA methyltransferases to methylate DNA

Profiling histone modifications

- ChIP-seq w/ antibodies specific to a particular type of modified nucleosome can map histone modifications genome-wide
- We'd like to come up with a way to combine these combinations of histone marks throughout the genome into functional annotations
 - Based on an observed pattern of marks at a locus, we'd like to label it w/ 'enhancer', 'promoter', 'inactive' or 'active gene body region', etc.
- 2 approaches to functional annotation of the genome:
 - Hidden Markov Model (ChromHMM)
 - Dynamic Bayesian Network (Segway)

Dynamic Bayesian Networks

- A Bayesian network (directed graphical model where arcs/ edges represent conditional dependencies) that models a dynamic process (sequential data, either temporal or spatial – e.g. along the genome)
- Similar to Hidden Markov Models, but include additional random variables that allow tuning (e.g., hard limits on segment lengths)

Black arcs (edges) = deterministic conditional dependence, red = stochastic conditional dependence

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Variable's parents are indicated by its direct predecessor in the directed graph

Every variable is conditionally independent of all variables in the model given its parents

n observation tracks *T*: sequence length

Square: discrete random variable Circle: continuous random variable

White: hidden variable Black: observed variable

Observation track: assay output (e.g., density of H3K4m e^{i} $3^{[1,n]}$ ChIP-seq reads – one track for each of *n* experiments)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Ruler marker:

=1 every 10th position, 0 otherwise (every 10th position, we update the countdown variable as to how long we've been in that label)

Countdown: Discrete variable that allows the specification of minimum or maximum segment length. Starts at initial value dependent on Q_T (might want TSS to be short but intergenic region to be long) and decreases where ruler marker M_T =1.

Transition: binary segment transition label that either forces the segment label to change at the current position $(J_t=1)$ or prevent it from changing $(J_t=0)$.

Segway generates a conditional probability table $P(J_t=1|Q_{t-1},C_{t-1})$ that maps each (Q_{t-1},C_{t-1}) to one of three rules that determine the value of J_t : 1. Force: $P(J_t=1) = 1$ 2. Prevent: $P(J_t=1) = 1$ 3. Allow: $P(J_t=1)=1/(1+L)$ "Allow" rule models geometric distribution w/ expected length L

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Train on 1% of the Genome
 - Assign equal probability (=1/n) of each label to the starting position, then use Expectation-Maximization (EM) algorithm to learn model parameters (contributions of each track (experimental assay) to each label)
 - Starting from different initial conditions (i.e., contributions of each track to a particular label) gave similar results
- Then use these parameters to segment the rest of the genome using Viterbi decoding (similar to what we discussed for HMMs)

Example of Segway's segmentation for a gene

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

-Arbitrarily chose there to be 25 labels (so that they would remain interpretable by biologists) The authors gave names to the resulting 25 labels:

- D: "dead" no activity
- GS: gene start
- GM: gene middle
- GE: gene end
- E: enhancer

Transcription Factor Binding

- Many more possible binding sites in genome than are actually occupied
- Binding sites are different in cell types and across time

• One key determinant of whether or not a TF binds is the local chromatin landscape: is the DNA accessible?

Dnase-seq reveals protected regions of the genome

- DNase-I cleaves at unprotected regions
 - Regions of open chromatin
 - Not wrapped around nucleosomes or bound strong by TFs

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Protein Interaction Quantitation (PIQ)

 Predicts TF binding from DNase-seq + sequence motif preferences of TFs

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Sherwood, Richard I., Tatsunori Hashimoto, et al. "Discovery of Directional and Nondirectional Pioneer Transcription Factors by Modeling DNase Profile Magnitude and Shape." *Nature Biotechnology* 32, no. 2 (2014): 171-8.

 Can get predictions for hundreds of TFs (need a motif for that TF) – no need for antibodies specific to proteins

3 Steps of PIQ algorithm

- 1. Identification of candidate sites using TF motifs from TF databases
- Smoothing of raw reads from each DNase-seq experiment. DNase-seq reads are modeled as arising from a Gaussian process to remove noise by adaptively smoothing the reads from neighboring bases

- 3. Identify binding sites of TF by iteratively combining direct evidence of binding (DNase-seq) with computer-generated model of DNaseI hypersensitivity that includes that event (uses TFsignature profile shapes and magnitudes for each TF to build a model of the expected DNaseI hypersensitivity)
- Use log-likelihood ratio to test each region for TF binding, calling those above 1% of null distribution as binary "bound" regions

Pioneer Transcription Factors

 Region of "closed" chromatin that's inaccessible to most TFs can be opened by pioneer TF binding

© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Zaret, Kenneth S., and Jason S. Carroll. "Pioneer Transcription Factors: Establishing Competence for Gene Expression." *Genes & Development* 25, no. 21 (2011): 2227-41.

 Then once chromatin is opened, other "settler" TFs can bind

Identification of Pioneer TFs

- Apply PIQ to a developmental lineage model that involves stepwise differentiation of mouse stem cells
 - Collect DNase-seq data at six-cell states at different timepoints
 - "Pioneer index" measures motif-specific expected increase in DNasel accessibility at sites whose binding changes at successive timepoints
 - Most motifs showed little pioneer activity, while a small number of motifs (TFs) open chromatin substantially upon binding

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Sherwood, Richard I., Tatsunori Hashimoto, et al. "Discovery of Directional and Nondirectional Pioneer Transcription Factors by Modeling DNase Profile Magnitude and Shape." *Nature Biotechnology* 32, no. 2 (2014): 171-8.

 Settler TFs can bind once pioneers have opened the chromatin; loss of pioneer binding causes chromatin to return to a closed state

Asymmetrical chromatin opening by directional pioneers

- For non-palindromic motifs (e.g. AATTCG), we know which strand (+/-) the motif is on and therefore in which direction the TF is binding
- Some pioneer TFs tend to open chromatin more strongly in one direction – could inform mechanisms of pathways how TFs deposit histone marks

3D structure of the genome & enhancer looping

- DNA is packaged tightly in 3D space in the nucleus
 - This structure dictates which elements far apart on the genome (Mb away) can physically interact due to close proximity in 3D space
- Important for formation of promoter-enhancer interactions

Mouse ESCs

Enhancers: distal regulatory elements that, when bound by specific
TFs, enhance the expression of an associated gene

Nature Reviews | Genetics

TFIID

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Ong, Chin-Tong, and Victor G. Corces. "CTCF: An Architectural Protein Bridging Genome Topology and Function." *Nature Reviews Genetics* (2014).

22

http://www.nature.com/nrg/journal/v15/n4/images/nrg3663-f4.jpg

ChIA-PET reveals 3D interactions of the genome

Chromatin Interaction Analysis by Paired-End Tagging

23 http://genomebiology.com/content/figures/gb-2010-11-2-r22-1-l.jpg

Chromatin Interaction Analysis with Paired-end Tag Sequencing." Genome Biology 11 (2010): R22

ChIA-PET reveals 3D interactions of the genome

-ChIA-PET sequence tags that pair with tags from known promoter regions reveal RNA PolII ChIP peaks that are at enhancer regions

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Mercer, Tim R., Stacey L. Edwards, et al. "DNase I-hypersensitive Exons Colocalize with Promoters and Distal Regulatory Elements." *Nature Genetics* (2013).

http://www.nature.com/ng/journal/v45/n8/images/ng.2677-F2.jpg

Assessing significance of ChIA-PET interactions

 Inter-ligation events (e.g. between a putative enhancer and promoter) could arise from two sources

Courtesy of Li et al. License: CC-BY. Source: Li, Guoliang, Melissa J. Fullwood, et al. "Software ChIA-PET Tool for Comprehensive Chromatin Interaction Analysis with Paired-end Tag Sequencing." *Genome Biol* 11 (2010): R22.

http://genomebiology.com/2010/11/2/R22/figure/F1

• We need to assess if the inter-ligation events are significantly enriched for having occurred from within the same cluster (true interaction events)

Assessing significance of ChIA-PET interactions

- Hypergeometric test for significance
 - I_{A,B}: # of inter-ligation events between loci A and B (paired-tags mapping to A & B)
 - c_A , c_B : total number of ligation events associated with A , B (single tags mapping to A or B)
 - N: total number of ligation events (total single tags)

Probability of observing exactly your observed number of inter-ligation events under null hypothesis that each sticky end has an equal probability of ligating to any other end:

P-value is probability of your observation plus anything more extreme:

$$P(I_{A,B}|N, c_A, c_B) = \frac{\binom{c_A}{I_{A,B}}\binom{N-c_A}{c_B-I_{A,B}}}{\binom{N}{c_B}}$$
$$p = \sum_{i=I_{A,B}} P(i|N, c_A, c_B)$$

ChIA-PET has a high false negative rate

- Due to heterogeneous starting population of cells (transient promoter-enhancer interactions), complex protocol & stringent P-values to cut down on false-positives, ChIA-PET has a high false negative rate
- So, given an a number of promoter-enhancer interactions observed in ChIA-PET experiment 1 & in ChIA-PET experiment 2 with each capturing only a subset of the total events, we'd like to estimate the true number of interactions occurring in the cell

Estimating the total number of events from overlap

- Again, we can use the hypergeometric model
 - Given two observed sample sizes m & n along with their overlap k, we'd like to estimate the total number events N

$$\hat{N} = \underset{N}{\operatorname{argmax}} \left[P(X = k; N, m, n) \right]$$

– The maximum likelihood estimate of *N* is approximately:

$$\hat{N}(m,n,k) = \frac{mn}{k}$$

- Example: Experiment 1: 100 events

Experiment 2: 200 events

- overlap is only 20. It seems like we must be sampling only a small fraction of the total events each time!

- Indeed, maximum likelihood estimate is 1000 total events that each sample came from

Estimating the total number of events from overlap

- The previous model assumes all events were true positives, while in reality some are false positives.
 - We overestimate the total event count since the observed m and n are larger than they truly are without the false positives
 - Assume the overlapping events are true positives and the nonoverlapping events have false positive rate f (so 1-f of the events are true positives). Then we can update estimates of mand n:

$$m' = (1 - f)(m - k) + k$$

n' = (1 - f)(n - k) + k

- With the previous example (100 and 200 events w/ 20 overlapping), let's say there is a false positive rate of 5%. Then:
 - m' = (0.95)(80) + 20 = 96
 - n' = (0.95)(180) + 20 = 191
 - The modified estimate of the total # of events if therefore: (96)(191)/20 ≈ 869 (vs. 1000 without considering false-positives)

MIT OpenCourseWare http://ocw.mit.edu

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.