4-30 Recitation

DG Lectures 19 & 20
QTLs & Human Genetics



Announcements

Pset 5 due this Thursday (5-1)
Exam 2 next Tuesday (5-6)

— 2 double-sided sheets of notes

Office Hours next Monday instead of Tuesday

No recitations or regular OHs after exam

Project Presentations May 13 and 15 —all
students will peer review



Outline

* Quantitative Trait Loci
— Simple genetic model (haploid, unlinked)
— Genotype-phenotype interactions
* Broad-sense and narrow-sense heritability, sources of variance
— LOD scores
— Bloom et al. 2013 & missing sources of heritability

* Human Genetics
— Testing for SNP/phenotype associations
— Linkage Disequilibrium
— Variant Phasing
— Hardy-Weinberg Equilibrium



Genotype to Phenotype

* Phenotype: organisms observable characteristics
or traits
— Qualitative: dead/alive, tall/short
— Quantitative: Growth rate, height, gene expression

* Quantitative Trait locus (loci) — a marker that is
associated with a quantitative trait

— eQTL (expression quantitative trait locus) — marker
associated with gene expression

— eQTLs are often SNPs (single nucleotide
polymorphisms) in the population

e Can be in cis (within “Kbs on the same chromosome) or in
trans (1+Mb away or on different chromosome)

e Often cell-type specific



Haploid, unlinked genetic model

* N loci that each contribute equally (1/N) to the trait
 Haploid = organism has 1 copy of each allele

 Unlinked = loci are on different chromosomes or far enough apart on the same
chromosome so crossing over (recombination) can always occur

— Each locus is therefore inherited independently
e Child randomly inherits maternal or paternal copy

1 2 N 1 > N
e T -~ X  — . - —-
Effect o ¢ 0 1N 1/N 1/N

Size
_ Normal p.d.f.

Binomial p.m.f.

1 2 N
Binomial model of # of black _ _ g\N-x gx
alleles x inherited: p(x,N) = X (1=.5)775

Here x is the phenotypic E[x]=.5 :

Value from O (nO a”eleS) = © cfln"l on wikipedia. Some rlghts reserved. License:

to 1 (a” blaCk a||E|ES) O~2 — 25 / N CC-BY-SA. This content is excluded from our Creative
X .

Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-usef.



http://en.wikipedia.org/wiki/Binomial_distribution#mediaviewer/File:Binomial_Distribution.svg
http://ocw.mit.edu/help/faq-fair-use/

Situation is more complex if loci are linked

Genetic linkage causes marker correlation

1 1 N-1 1 1 N-1
o T I -l X —— —-
Proxim_al 1 1 N-1
genomic —— - o HE

locations makes
crossing over
unlikely during
meiosis

- Assumption that each allele is inherited independently no longer
holds — models more complex than binomial needed to capture this

dependence



Genotype — Phenotype interactions
e j—individualin[1.. N]
* g —genotype of individual i
* p,— quantitative phenotype of individual i (single trait)
* e, —environmental contribution to p,

— f + ,. Phenotype is a function of genotype plus
pi gi €i an environmental component
E -0 E 21 . 2 Environmental component is unbiased but
[ei] — [6 ] = Oe¢ introduces noise from genotype to phenotype

2 2 2 2 2 2 2
o,=0;t0:%*20, = O0,=0;%t0.

Assume environment affects all genotypes equally -> g
and e are independent and their covariance is 0



All phenotypic variation

Environmental Heritable genetic variation
variation (Broad-sense heritability H?)

Additive genetic
variation Non-additive
(Narrow-sense genetic variation
heritability h?)

Gene-
environment
interactions

Dominance Gene-gene
effects interactions




2 types of heritability

e Broad-sense (H?) and narrow-sense (h?)
* Broad-sense

— Fraction of phenotypic variance explained by genetic
components

) 2 2 Can be estimated from
2 _ Og _ Op~Oe identical twins or clones
H" = 2 2 & Can be observed from all
Op Op .

individuals in population

— The upper bound for phenotypic prediction by optimal
arbitrary (not necessarily linear) model

* Narrow-sense

— The upper bound for phenotypic prediction by linear
model (= fraction of total phenotypic variance that is
caused by the additive effects of genes)

— Determines the resemblance of offspring to their parents
and the population’s evolutionary response to selection
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Narrow-sense heritability (h?) is the

regression (slope) of offspring on parents

A2 =0 W x5 h =1
offspring offspring offspring

parents parents parents

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Regression slope is: Cov(x,y)/Variance(x) or Cov(parents, offspring)/Variance(parents)
- xis the “mid-parent”

The higher the slope, the better the offspring resemble their parents.
In other words, the higher the heritability, the better the offspring trait values are predicted
by parental trait values.

http://content.csbs.utah.edu/“‘rogers/ant5221/|ecture/QT52.pdf|


http://ocw.mit.edu/help/faq-fair-use/
http://content.csbs.utah.edu/~rogers/ant5221/lecture/QTs2.pdf

Narrow-sense heritability:
additive model of phenotype

g;;is a binary {0,1} variable of QTL j in individual i

Each QTL in the genotype contributes independently &
linearly to the phenotype:

fa(gi) = E ﬁjgij-l_[)’()
JEQTL
B, is the effect of QTL j on the phenotype (higher -> QTL
has greater impact)

For additive markers, children are expected to be the
midpoint of their parents since they get an average of %

loci from each parent:
E[ /. (s)]- fa(zpl) . fa(zpz)




Narrow-sense heritability:
additive model of phenotype

fa(gi) = E ﬁjgij-l-ﬁO

JEQTL

pi=fa(gi)+€i (73=(712’_igz(pi_fa(gi))2

N o
\ )
|
2 . .
9) O, Total phenotypic Variance that remains
Narrow-sense = > variance after linear model — one
heritability: Gp source of “missing”

heritability in studies
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Using LOD scores to discover QTLs for
a trait (e.g. gene expression)

N Plple . u.,u,o
LOD=log10H (pl gz] IuO Iul )

LOD = Logarithm of the ODds =1 P (p | M, (7)
i = individual \ ! ]

|

“Null” model: locus does not affect gene’s expression, and the probability of expression value p.
simply follows a Normal(p,o?) distribution

: locus affects a gene’s expression (is a QTL), and there are different mean
expression values p, and y, depending on which genotype is present at the locus (if g;=0 or 1)

- If the alternative model (that the locus is a QTL for the gene) doesn’t explain the expression
values any better than the null model, the probability ratios are 1 and the LOD score is O
- If alternative model better explains the data, LOD score >0
- If the locus is a QTL, the LOD score will get higher with increasing number of individuals (N) —
with larger sample samples we have greater power to detect loci as being statistically
significant QTLs. This is referred to as “power” — a study with too few people to determine
statistical significance at some loci is “underpowered”.



Using LOD scores to discover QTLs for
a trait (e.g. gene expression)

N Plple . u.,u,o
LOD=10g10H (pl gz] IuO lul )

j=1 P(pl.|u,(7)

* How to determine if a LOD score is significant?
- Permute genotypes (so the marker 8ii and expression values are mixed up) 1000
times and compute LOD scores to get empirical null distribution
- Determine the null LOD score that corresponds to FDR = 0.05
- Use this threshold on unpermuted LOD scores to find QTLs for each gene
- Since all loci are included in the permuted null distribution, no multiple hypothesis
correction needed

* Fit alinear model to discovered QTLs to determine each QTL’s contribution (f;)

- Once this has been done to find the set of statistically significant QTLs from the first
pass, you can repeat to find QTLs in the residuals from the existing model that may have

been below the threshold in the first pass (3 times)

14
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Bloom et al. 2013: “Finding the sources of missing
heritability in a yeast cross”

e 5-29 QTLs per trait (median of 12), although most QTLs have
small effect size

Number of traits

QTL effect size

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources oil
Missing Heritability in a Yeast Crosd." Nature 494, no. 7436 (2013): 234-7.


http://dx.doi.org/10.1038/nature11867
http://dx.doi.org/10.1038/nature11867

Bloom et al. 2013: “Finding the sources of missing
heritability in a yeast cross”

 Good news: most additive heritability (narrow-sense) is
explained by detected QTLs
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Narrow-sense heritability (h?)

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources oﬂ
Missing Heritability in a Yeast Cross|" Nature 494, no. 7436 (2013): 234-7.


http://dx.doi.org/10.1038/nature11867
http://dx.doi.org/10.1038/nature11867

Bloom et al. 2013: “Finding the sources of missing
heritability in a yeast cross”

 Bad news: There is still much heritability missing from our
additive linear model
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Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Bloom, Joshua S., Ian M. Ehrenreich, et al. "Finding the Sources of
Missing Heritability in a Yeast Crosd." Nature 494, no. 7436 (2013): 234-7.


http://dx.doi.org/10.1038/nature11867
http://dx.doi.org/10.1038/nature11867
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Bloom et al. 2013: “Finding the sources of missing

heritability in a yeast cross”

 What could cause the missing heritability?

Incorrect heritability estimates
Rare variants that the study is underpowered to detect

Structural variants (insertions or deletions — these studies typically only
measure SNPs)

Epigenetic interactions
Epistatic effects

* When the effect of a gene depends on the presence of one or more modifier genes (the
genetic background)

* Example: locus A and locus B each only cause a 5% decrease if one of the variants is
present, but a 50% decrease if both are present

* Since all pairwise interactions is too large of a search space (100,000 x 100,000), can only
consider all interactions that involve at least of the detected QTLs (20 x 100,000)
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Human Genetics

 We want to find human variants (SNPs, etc.) that are
associated with a particular phenotype (e.g. a disease)

“Manhattan plot”

http://www.nature.com/ng/journal/v44/n4f
images/ng.1109-F1.jpg

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Tanikawa, Chizu, Yuji Urabe, et al. "A Genome-wide Association|

Study Identifies Two Susceptibility Loci for Duodenal Ulcer in the Japanesd
Populatiori." Nature Genetics 44, no. 4 (2012): 430-4.

* We need a way to test whether a SNP is significantly
associated with a phenotype:

— Chi-squared test

* Asymptotic approximation, so not appropriate if counts are small (should be at
least 5 counts per category)

— Fisher's exact test

* An “exact” calculation (not asymptotic approximation), but involved factorials
so computationally difficult when counts become large (but this is exactly
when the Chi-square test is appropriate)


http://dx.doi.org/10.1038/ng.1109
http://dx.doi.org/10.1038/ng.1109
http://dx.doi.org/10.1038/ng.1109
http://www.nature.com/ng/journal/v44/n4/images/ng.1109-F1.jpg
http://www.nature.com/ng/journal/v44/n4/images/ng.1109-F1.jpg

Testing for SNP/phenotype association

e Testing for association between a SNP and a disease (or
some other trait) — we are given the following counts:

Allele Cases Total Counts
C 62 80 142

108 250 358
Total Counts | 170 330 500

* Calculate expected counts under null hypothesis that the proportion/
ratio of cases to controls is the same regardless of whether an
individual is C or

— 1) calculate total proportion of cases regardless of A/C =170/500 = 0.34

— 2) calculate what proportion of the 142 Cs should be cases according to the total
proportion of cases = 142(0.34) = 48.28, = 142(1-0.34) =93.72

— 3) same for the As: what proportion of the 358 As should be cases/controls
according to null model?

for A individuals, expected cases = 358(0.34) =121.72, = 358(1-0.34)=236.28



Testing for SNP/phenotype association

e Testing for association between a SNP and a disease (or
some other trait) — we are given the following counts:

Observed
Allele Cases Total Counts
C 62 80 142
108 250 358
Total Counts | 170 330 500
Expected
Allele Cases Total Counts
C 48.28 93.72 142
psing a 121.72 236.28 358
Ch"fj;?red Total Counts | 170 330 500
Y2 _ i (O, - El.)2 _ (62 - 48.28)° N (80-93.72) N (108 -121.72) N (250 —236.28)° _395
~ E. 48.28 93.72 121.72 236.28

df=(#rows-1)(#cols—1)=1
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Testing for SNP/phenotype association

http://sites.stat.psu.edu/~mga/401/
tables/Chi-square-table.pdf|

Chi-Square Distribution Table

The shaded area is equal to « for x? = x2.

Since our statistic (8.25) is
higher than the cut-off for
P = 0.005, the P-value is
less than 0.005

df X.2995 X.2990 X.2975 X.2950 X.2900 X.2100 X.2050 X.2025 X.2010 X.2005
— ] 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879 | |
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589
USing a 10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
Chi-squared

test:

8.25

n 2 2 2 2 2
X2 _ E (O, _EEi) _ (62 -48.28) N (80-93.72) N (108-121.72) N (250 -236.28) _
i=1 i

48.28

93.72

121.72

236.28

df = (# rows -1)(# cols — 1) =1, and P(X; =8.25)=0.0041 so we reject H, (=>SNP is associated)


http://sites.stat.psu.edu/~mga/401/tables/Chi-square-table.pdf
http://sites.stat.psu.edu/~mga/401/tables/Chi-square-table.pdf

Testing for SNP/phenotype association

e Testing for association between a SNP and a disease (or
some other trait) — we are given the following counts:

Observed
Allele Cases Total Counts
C 80 142
108 250 358
Total Counts | 170 330 500
Fisher’s Exact Test: L2 (U (o)
Upper-tail one-sided P-value: Z =00 ~ .003
( “;b )( Czd ) a=62 (Y70)
’ ( a*z:ifd ) Since the expected count of a (= Cases with C)

was ~48, since 62 = 48 + 14, the lower tail goes
Sum all probabilities for observed and all more extreme values with same up to 48 - 14 = 34. The two-sided P-value is:

marginal totals to compute probability of null hypothesis

Lot 14  froed be 34 (142)( 358 142 142 358 )
et our 1 degree of freedom be @, a ) \U70— a 170 )~ 0047
the number of cases with “C” Z (500) + Z 500) .

a=0 170 a=62 170

23
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Human Genetics

After doing a Chi-square test and seeing that a SNP is significantly enriched in a
disease population, we might believe that the SNP is linked to the disease. But
population structure can confound these results (methods for correcting for

this are beyond the scope of this class) Test control SNPs (known to
be unrelated to the disease)
Q = normal Q = disease A or T=SNP at for high X? distribution
Locus 1 between cases and controls,
e which would indicate

population stratification

e e mutation d/ e benign °

causing disease mutation
at locus 2 A->T at

O OEROBOEBEORBEORES OO

In 4t generation, fraction of Ts in population = 4/14, but in diseased group = 4/6
But once we see the family tree, we see that the SNP at locus 1 is unrelated to the disease



Linkage Disequilibrium

 Recombination during meiosis "shuffles" alleles between the
homologous maternal and paternal chromosomes

() (™)

—> X e
¥ ¥

Over time and after many crossover events have occurred, loci that are physically close

together on the chromosome will tend to remain together, so the probability of two

loci occurring together is a function of their distance along the chromosome

) If a crossover event is equally likely to occur at
any position along the chromosome, the
[ ) probability that it will separate loci Aand B is
AB C much smaller than Aand CorBand C

We have so far generally assumed that inheriting a particular allele at one locus won't affect
the probability of inheriting an allele at a different locus. Such loci are in linkage
equilibrium.

Loci are considered in linkage disequilibrium if genotypes at two loci are not independent of
one another (e.g. inheriting A at locus 1 influences probability of inheriting B at locus 2)




Linkage Disequilibrium

 Measuring linkage disequilibrium: consider two loci A
and B, where locus A has two possible alleles A and a,
and locus B has two alleles B and b:

— then gametes can have one of four possible combinations:

Gamete Frequency Allele Frequency
AB Pag A Pa=Pas+Pab
Ab Pab a Pa=Pap+Pab
aB P.g B Ps=Pap+Pas
ab Pab b Pb=Pab+Pab

* Then if alleles are randomly associated w/ one another, the
frequencies of the four gametes should be the product of the

allele frequencies:

~ ~ e h. http://www.nature.com/nrg/
— ex. pAB - pApB - (pAB+pAb)(paB+pAB) b oy journal/v2/n1/pdf/
aB nrg0101_011a.pdf

aB

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Mackay, Trudy FC. "Quantitative Trait Loci in Drosophilal"
Nature Reviews Genetics 2, no. 1 (2001): 11-20.


http://dx.doi.org/10.1038/35047544
http://www.nature.com/nrg/journal/v2/n1/pdf/nrg0101_011a.pdf
http://www.nature.com/nrg/journal/v2/n1/pdf/nrg0101_011a.pdf
http://www.nature.com/nrg/journal/v2/n1/pdf/nrg0101_011a.pdf
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Linkage Disequilibrium

Gamete Frequency Allele Frequency
AB Pag A Pa=Pas+Pab
Ab Pab d Pa=Pag+Pab
aB Pag B Pp=Pap+Pas
ab Py b Pb=Pab+Pab

If they are not randomly associated (and therefore in linkage
disequilibrium) then there will be a deviation (D) in the expected

Di ilib

frequencies: sequiibrium

_ http://www.nature.com/nrg,{

pAB pApB +D journal/vZ/nl/pdf,{

— pAb pApb D nrg0101_011a.pdf

— Pap = PaPp - D

— pab = pa pb + D Courtesy of Macmillan Publishers Limited. Used with permission.

. . Source: Mackay, Trudy FC. "Quantitative Trait Loci in Drosophild."

Where D IS g|ven by: Nature Reviews Genetics 2, no. 1 (2001): 11-20.

— D =pagPap — PapPag (D =0 =>no disequilibrium)
AB and ab are the "coupling" gametes (AB on one parental

chromosome, ab on the other), Ab and aB are the "repulsion”
gametes (crossing over event must occur between the loci) =D is

the difference between these types.


http://www.nature.com/nrg/journal/v2/n1/pdf/nrg0101_011a.pdf
http://www.nature.com/nrg/journal/v2/n1/pdf/nrg0101_011a.pdf
http://www.nature.com/nrg/journal/v2/n1/pdf/nrg0101_011a.pdf
http://dx.doi.org/10.1038/35047544
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Variant Phasing

To determine which genes are linked together (and therefore likely to be inherited
together in the next generation), you need to figure out which alleles (which
variant SNPs) are on the same chromosome = "phasing"

— Why does this matter?

- If you have 2 different mutations in the same copy of a gene (phased), the 2" copy (no
mutations) may be enough for normal activity

- If there’s one mutation in each (unphased), both copies of the gene may be nonfunctional

Often rely on family data (e.g. parents) to determine which "parental"
chromosome segments were inherited together in the child

Can be used to identify haplotypes = combinations of alleles at adjacent locations
in a chromosome that are inherited together over many generations

http://www.uic.edu/classes/bios/bios100/lecturesfO4amf
crossingoverOl.jpg

X,Y,and Z are
“in phase” on this X, y, and z are “in phase” on Due to crossing over, the
chromosome this chromosome phasing has changed

© The McGraw Hill Corportation, Inc.. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use[.


http://ocw.mit.edu/help/faq-fair-use/
http://www.uic.edu/classes/bios/bios100/lecturesf04am/crossingover01.jpg
http://www.uic.edu/classes/bios/bios100/lecturesf04am/crossingover01.jpg
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Variant Phasing

Longer reads will help —
two SNPs present in the
same read are definitely on

the same chromosome



Hardy-Weinberg Equilibrium (HWE)

* Assume only two alleles: A and a
e If P(A) = =frequency of A in the population,
and the population is in HWE, then:

— P(AA) = {? gamete A (1) a (1-))
— P(Aa) = 2y (1-Y) A (D) AA (1?) | Aa (P(1-)))
— P(aa) = (1-y)? a(1-) | Aa(P(1-g))| aa((1-)?)

« HWE states that allele and genotype frequencies
in a population will be constant from generation
to generation in the absence of other
evolutionary forces; assuming the following:

— random mating

— population size is infinite

— no migration, mutation or selection (so allele
frequencies won't change)




HWE and Likelihood ratio tests

* Testing whether a population is in HWE using a
likelihood ratio test (LRT):

— say we observe N = 200 individuals with the following
genotypes: 25 aa, 90 Aa, 85 AA

— is this population in HWE?
* Recall that the likelihood ratio is given by:
P(Data | H,) «<—— likelihood of the data under the null model

A=
P(Data | Hl) <—— likelihood of the data under the alternative
model

* Then the following test statistic is approximately Chi-
square distributed:

—21n(A) ~ Xjf
— df = (# free parameters in H,) — (# free parameters in H,)

31



HWE and Likelihood ratio tests

* We observe n =200 individuals with the following
genotypes: 25 aa, 55 Aa, 120 AA

— is this population in HWE?
* Here, under the unconstrained model H,, the
parameters are p,,, p,, and p__ (df = 2)

— for this example: p,, =120/200=0.6, p,, =55/200 =
0.275, p., = 25/200 = 0.125

* Under the constrained model H,, we only need p,
(fraction of A alleles in population) and if HWE holds:
— p, = (2n,,#n,.)/2n = (2(120) + 55)/400 = 295/400 = 0.7375
— par = (p,)? = (0.7375)% = 0.5439

_ _ _ _ could also do a Chi-square
Pha = 2P, (1 pA) =0.3872 < goodness of fit test with these
— p..=(1-p,)?=0.0689 probabilities * n as the expected

counts instead of LRT

32
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HWE and Likelihood ratio tests

* We observe N = 200 individuals with the following
genotypes: 25 aa, 90 Aa, 85 AA

— is this population in HWE?
 Therefore, our test statistic is:

2 2
_21n(k)=_21nP(DataIpAasz(l_pA)a(l_pA) )
P(DatalpAA’pAa’paa)
In P(Data10.5439,0.3872,0.0689)
P(Datal0.6,0.275,0.125)

* Note that P(Data|H) follows a multinomial distribution

(generalized binomial for more than 2 categories): | .. that the

I/l! X X
P(x,,...,x;n,Dyy..s D) = ' 'pll...pkk
X !henx,!

)

factorials will drop
out of LRT

So for example:

!
P(Datal|H,) = P(25,90,85;200,0.6,0.275,0.125) = 200!

25190185!

0.6°0.275"0.125%




Likelihood Ratio Tests

* Can use a similar LRT to determine whether the data
are better explained when treated as two
subpopulations, like cases and controls:

— Ho: pap Pas @and p,, are sufficient to explain the data

— H;: we do better by considering two subpopulations:
* pl,, P, and pl_ for subpopulation 1 (DY)
* p?,n P?a, and p?_ for subpopulation 2 (D?)

e Then our test statistic T is:

P(DIpissPuusPaa)

T=-2In
P(Dl lp,lqA’p}é\a’pclm)P(Dz lpflA7pia’p§a)

— approx. Chi-square distributed withdf=4-2 =2

34
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