8.01L SUMMARY OF EQUATIONS

Note: Quantities shown in boldare vectors.
$\mathbf{v}=\mathrm{dr} / \mathrm{dt} \quad \mathbf{a}=\mathrm{d} \mathbf{v} / \mathrm{dt}$
For constant acceleration a, if at $t=0 \mathbf{r}$ ■ $\mathbf{r} 0$ and \mathbf{v} G $\mathbf{v} 0$: $\quad \mathbf{v}=\mathbf{v}_{\mathbf{0}}+\mathbf{a} t$

Adding relative velocities ("wrt" is short for "with respect to"): $\underset{\substack{\mathbf{v}_{A} \\ B}}{w_{B}}+\underset{\substack{\mathbf{v}_{B} \\ w_{t}}}{\mathbf{v}_{C}} \underset{\substack{w r t}}{\mathbf{v}_{A}}$
$\sum \mathbf{F}=0 \Leftrightarrow \mathbf{a}=0 \quad$ (static equilibrium)

Physical Constants:
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ Use the approximate value $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ where told to do so. Conversion reminder:
π radians $=180^{\circ}$
Lazy Physicist 's Favorite Angle: (to be used when calculators are not allowed):
36.9° and 53.1^{0} are the angles of a 3-4-5 right triangle so:
$\sin \left(36.9^{\circ}\right)=\cos \left(53.1^{\circ}\right)=0.60 \quad \cos \left(36.9^{\circ}\right)=\sin \left(53.1^{\circ}\right)=0.80$
Solution to a Quadratic Equation: If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

