Massachusetts Institute of Technology
 Department of Physics

Physics 8.01L

Problem 1

a) $V=\frac{N k T}{P}, \quad V_{N E W}=\frac{N k \frac{T}{3}}{\frac{D}{10}}=\frac{10}{3} \frac{N k T}{P}, \Rightarrow \mathrm{~V}$ goes up
b) (i) $F=m g=8(10)=80 \mathrm{~N}$
(ii) $F_{\text {Buoy }}=(1000)(.002)(10)=20 \mathrm{~N}$,
$\therefore F=80-20=60 \mathrm{~N}$
c) Velocity goes down, pressure goes up.

Problem 2

a) Equilibrium, so $F_{\text {Buoyant }}-w=0 \Rightarrow F_{B}=w$.
$F_{B}=V_{f} \rho_{f} g=\left(\pi r^{2} d\right) \rho g=w, d=\frac{w}{\pi r^{2} \rho g}$
b) $F_{T O T}=M a=F_{B}-w, \quad F_{B}=\pi r^{2}\left(\frac{d}{2}\right) \rho g=d\left(\frac{\pi r^{2} \rho g}{2}\right)$

From (a), $d=\frac{w}{\pi r^{2} \rho g} \Rightarrow F_{B}=\frac{w}{\pi r^{2} \rho g}\left(\frac{\pi r^{2} \rho g}{2}\right)=\frac{w}{2}$
Half as deep \Rightarrow half as large buoyancy force.
$F_{T O T}=M a=\frac{w}{2}-w=\frac{-w}{2}, \quad a=\frac{-w}{2 m}$, but $w=M g$.
$\Rightarrow a=\frac{-g}{2}$, accelerating downward at $\frac{g}{2}$.

Problem 3

a) $P+\rho g y=$ constant, $P_{1}+\rho g(0)=P_{2}+\rho g(6500)$
$P_{2}=P_{1}-\rho g\left(y_{2}\right)=1.013 \times 10^{5}-(0.95)(9.8)(6500)$,
$P_{2}=4.08 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}=0.40 \mathrm{~atm}$

b) $N=$ const, $V=$ const, $P V=N k T$
$\Rightarrow \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}, T_{1}=293, P_{1}=1.5 \times 10^{7}, T_{2}=253, \quad P_{2}=\frac{P_{1} T_{2}}{T_{1}}=1.30 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$

Problem 4

ii) f exerts torque around center of mass, so you fall over.

iii) Now N exerts torque which can balance torque due to friction.

Problem 5

a)

b) Take torques around toes: $M g L \cos (\theta)-F\left(\frac{4 L}{3}\right) \cos (\theta)=0, F=\frac{3}{4} M g$
$\mathbf{c)} T+F=M g, T=\frac{1}{4} M g$.

Problem 6

a) $3 M g+M g=4 M g$.
b) Take torques about left end: $4 M g D-L M g=0, D=\frac{L}{4}$.

Check torque around weight: $0=D(3 M g)-M g(L-D), D(4 M g)=M g L, D=\frac{L}{4}$.

Problem 7

a)

b) $\sum F_{x}=N_{2}+N_{1} \sin (\theta)-f_{1} \cos (\theta)=0$
$\sum F_{y}=f_{2}-M g+N_{1} \cos (\theta)+f_{1} \sin (\theta)=0$
c) $\sum \tau=M g\left(\frac{L}{2} \cos (\theta)\right)-N_{1} L=0$.
d) $\sum \tau=N_{2} L \sin (\theta)+f_{2} L \cos (\theta)-M g \frac{L}{2} \cos (\theta)=0$.

Problem 8

a) $\tau=I \alpha$, take torques about hinge.

$$
(M g)\left(\frac{L}{2}\right)\left(\sin \left(90^{\circ}\right)\right)=\left(\frac{M L^{2}}{3}\right)(\alpha) \Rightarrow \alpha=\frac{\frac{g L}{2}}{\frac{L^{2}}{3}}=\frac{3 g}{2 L}, \alpha=\frac{3 g}{2 L}
$$

b)

$F=M a_{c m}, a_{c m}=\alpha\left(\frac{L}{2}\right)$, downward.
All forces and acceleration are vertical $\Rightarrow F_{H}=0$.
$F_{V}-M g=-M a=-M \alpha\left(\frac{L}{2}\right)=-M\left(\frac{3 g}{2 L}\right)\left(\frac{L}{2}\right)=\frac{-3 M g}{4}$
$F_{V}=M g-\frac{3 M g}{4} \Rightarrow F_{V}=\frac{M g}{4}, F_{\text {TOT }}=\frac{M g}{4}, u p$.
c) Used fixed pivot:

$K E_{I}=0, P E_{I}=M g L, K E_{F}=\frac{1}{2} I_{\text {end }} \omega^{2}, P E_{F}=M g\left(\frac{L}{2}\right)$, Work $=0$.
$\frac{1}{2}\left(\frac{M L^{2}}{3}\right) \omega^{2}+M g \frac{L}{2}=M g L, \frac{M L^{2} \omega^{2}}{6}=\frac{M g L}{2}, \omega^{2}=\frac{3 g}{L}$ or $\omega=\sqrt{\frac{3 g}{L}}$.
Used center of mass:
$K E_{I}=0, K E_{F}=\frac{1}{2} M v_{C M}^{2}+\frac{1}{2} I_{C M} \omega^{2}, v_{C M}=\omega\left(\frac{L}{2}\right)$
$K E_{F}=\frac{1}{2} M\left(\frac{L}{2}\right)^{2} \omega^{2}+\frac{1}{2}\left(\frac{M L^{2}}{12}\right) \omega^{2}=M L^{2} \omega^{2}\left(\frac{1}{8}+\frac{1}{24}\right)=M L^{2} \omega^{2}\left(\frac{3}{24}+\frac{1}{24}\right)$
$=M L^{2} \omega^{2}\left(\frac{1}{6}\right) \Rightarrow$ Same answer.

Problem 9

a) L is conserved: $m v R=\left(I_{0}+m R^{2}\right) \omega_{f}$
$\omega_{f}=\frac{m v R}{I_{0}+m R^{2}}$
b) $K E_{I}=\frac{1}{2} m v^{2}, K E_{F}=\frac{1}{2}\left(I_{0}+m R^{2}\right)\left(\frac{m v R}{I_{0}+m R^{2}}\right)^{2}=\frac{1}{2}\left(\frac{m^{2} v^{2} R^{2}}{I_{0}+m R^{2}}\right)$
$\frac{K E_{F}}{K E_{I}}=\frac{m R^{2}}{I_{0}+m R^{2}}$

Problem 10

a) Left
b) Yes, gravity.
c) Out of the page; Counter-clockwise.
d) Yes, pivot force.
e) Out of the page; Counter-clockwise.
f) Out of the page.

Problem 11

Take clockwise to be positive. Angular momentum is conserved: $I \omega_{I}-m v_{I} d=I \omega_{f}+m v_{f} d$ $0.30(\omega)-0.15(50)(0.8)=0.3(0.35 \omega)+0.15(40)(0.8)$
$0.20 \omega=6+4.8 \Rightarrow \omega=54 \mathrm{rad} / \mathrm{s}$. Period $=0.12 \mathrm{sec}$.

