Last Lecture

More 2-D examples

Circular motion

Today

Newton's Three Laws

Important Concepts

Remember how vectors change

- Remember how vectors add
- Separate "external" and "internal" forces
- Think carefully about what object each force acts on

Important Reminders

- Exam #1 is this Friday at 10am
- Material covered is through 2-D motion
- Information and sample problems are posted on the web page. Also copies of PRS, InClass problems and presentation slides.
- In addition to tutoring sessions, recitations, and office hours, there will be a Questions and Answer session tonight from 7-9pm.
- Next Mastering Physics due next Monday

Newton's First Law

- Objects move at constant velocity (and remain at rest if they start at rest) if they are acted on by no net external force.
 - Constant velocity means both magnitude and direction
 - No net force doesn't mean no force at all, just that whatever forces are present add up to zero
 - Only forces between objects, not internal forces count
 - This works both ways, if \vec{v} is constant, then $\vec{\Sigma F}$ must be zero and if $\vec{\Sigma F}=0$, then \vec{v} must be constant.

Newton's Second Law

$\sum \vec{F} = m\vec{a}$

- Everything else we will do in 8.01L is an example or a consequence of this equation.
 - ⇒Forces add as vectors
 - The total force points in the direction of the acceleration
 - The force and acceleration are related by m, a property of the object itself. Basically, how much "stuff" is there.
 - Note distinction between mass and weight

Units of Force

Acceleration is ^m/_{s²}
Use caution not to confuse *m* the mass, a property of an object, and *m* the meter, a unit of length

⇒ Mass is in kg

So, Force is
$$\frac{kg m}{s^2} = N$$

 \supset *N* is the Newton, the short unit for force.

Newton's Third Law

- The most confusing of them all!
- Force due to object A on object B is always exactly equal in magnitude and always exactly opposite in direction to the force due to object B on object A.
 - The two forces are called an "action-reaction" pair
 - The two forces are equal and opposite in direction but do not "add to zero and go away" in solving problems because they act of different objects
 - It only makes sense to add forces on a single object
 - If you consider A+B as a single object, then these forces become "internal" and do drop out

Inertial Reference Frames

- These principles only apply for observers who are not accelerating, a so-called "inertial" frame
- There are philosophical objections to this concept since it's hard to precisely define an inertial frame except as one where Newton's Laws are valid
- Alternative formulations are beyond the scope of this course, you don't need to worry about it

Summary

- ⇒ Force is related to the change in the velocity vector
- $\Rightarrow \sum \vec{F} = m\vec{a}$
- The unit of force is the Newton which equals $\frac{kg m}{r^2}$
- Action-reaction pairs are an important concept in solving problems but need to be considered very carefully, especially the fact that the two forces in the pair act on different objects
- These concepts only apply as phrased here in inertial reference frames