- Last Lecture

22-D kinematics - describing motion

- Today

DMore 2-D examples
-Circular motion (yes, even more vectors)
©Experiment \#2 Projectile Motion
OImportant Concepts
-Multiple dimensions are as independent as many objects
AA vector quantity can change in several ways
OThink carefully about directions
DDon't forget the units, they can help you find mistakes

$$
\begin{gathered}
\text { Projectile Motion } \\
x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2} \\
v_{x}=v_{0 x}+a_{x} t \\
a_{x}=0
\end{gathered}
$$

Circular Motion Summary

OMotion in a circle with constant speed and radius is accelerated motion.

The velocity is constant in magnitude but changes direction. It points tangentially.

The acceleration is constant in magnitude but changes direction. It points radially inward.

The magnitude of the acceleration is given by:

$$
|\vec{a}|=\frac{v^{2}}{R}
$$

Summary

-Position, velocity, and acceleration are ALL vectors and need to be manipulated using either arrows (qualitative) or components (quantitative)

- A vector can change by changing its magnitude (speed) or direction or both. All three changes imply the presence of an acceleration
©Checking the units or dimensions of an answer will help to guard against simple careless mistakes

Dimensional Analysis

D Name for a technique of checking the dimensions (or units) of an answer to check for careless mistakes in the formulas or algebra.
Example: $|\vec{a}|=\frac{v^{2}}{R}$

$$
\frac{m}{s^{2}} ? \frac{(m / s)^{2}}{m}=\frac{\left(m^{2} / s^{2}\right)}{m}=\frac{m^{2}}{s^{2} m}=\frac{m}{s^{2}}
$$

Preparing for Experiment \#2

- Go to 8.01L Experiment web page and download both the writeup and the program to your desktop.
- You will get paper copies of the report (link says "questions") but feel free to look at it ahead of time.
-Click on the link to input your data. You will use this once you take your own data.
- Start the program to make sure it runs OK.

Start reading the writeup. The summary that I will go through in detail starts on page 9.

