8.01L SUMMARY OF EQUATIONS

Note: Quantities shown in **bold** are vectors. $\mathbf{v} = d\mathbf{r}/dt$ $\mathbf{a} = d\mathbf{v}/dt$

Circular motion at constant speed $a = \frac{v^2}{r} = \omega^2 r$ (Centripetal acceleration, points towards center of circle, ω is angular speed in radians per second)

Adding relative velocities ("wrt" is short for "with respect to"): $\mathbf{v}_A + \mathbf{v}_B = \mathbf{v}_A$

 $\sum \mathbf{F} = 0 \iff \mathbf{a} = 0$ (Newton's first law) $\mathbf{F} = \mathbf{m}\mathbf{a}$ or $\mathbf{F} = d\mathbf{p}/dt$ (Newton's second law) $\mathbf{F}_{AB} = -\mathbf{F}_{BA}$ (Newton's third law) $\mathbf{p} = m\mathbf{v} \square$ (momentum) $\mathbf{J} = \int_{t_1}^{t_2} \mathbf{F} \, \mathrm{d}t = \int_{t_1}^{t_2} \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \mathrm{d}t = \mathbf{p}_2 - \mathbf{p}_1 \quad (\text{impulse})$ $\mathbf{r}_{\rm cm} = \frac{\Sigma m_i \mathbf{r}_i}{\Sigma m_i}$ (position of center of mass) **F** = -k**x** (spring force) $f \le \mu N$ (Friction force relative to Normal force) $\mathbf{F} = -\frac{GMm}{r^2}\hat{\mathbf{r}}$ (gravitational force between two particles) $W = \int \mathbf{F} \cdot d\mathbf{r}$ (work done by force \mathbf{F}) $W_{other} = \Delta E = E_F - E_I$ E = KE + PE (work-energy theorem) $F_x = -\frac{dU}{dx}$ (force derived from potential energy) Potential Energies: $U = \frac{1}{2}kx^2$ (spring force) $U = -\frac{GMm}{r}$ (gravitational, general) U = mgh (gravitational, near Earth) $\omega = \sqrt{k/m}$ $x = A\cos(\omega t + \phi)$ (Equations for Simple Harmonic Motion) $v = -A\omega\sin(\omega t + \phi)$ $T = 2\pi/\omega$ **Physical Constants:** $g = 9.8 \text{ m/s}^2$ Use the approximate value $g = 10 \text{ m/s}^2$ where told to do so. $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$ Conversion reminder: π radians = 180° Lazy Physicist 's Favorite Angle: (to be used when calculators are not allowed): 36.9° and 53.1° are the angles of a 3-4-5 right triangle so: $\sin(36.9^\circ) = \cos(53.1^\circ) = 0.60$ $\cos(36.9^\circ) = \sin(53.1^\circ) = 0.80$ $\tan(53.1^\circ) = 1.33$ $\tan(36.9^\circ) = 0.75$ Solution to a Quadratic Equation: If $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$