8.01L SUMMARY OF EQUATIONS

Note: Quantities shown in bold are vectors.
$v=d r / d t \quad a=d v / d t$
For constant acceleration \mathbf{a}, if at $t=0 \mathbf{r}=\mathbf{r}_{0}$ and $\mathbf{v}=\mathbf{v} 0: \begin{aligned} & \mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t \\ & \mathbf{r}=\mathbf{r}_{0}+\mathbf{v}_{0} t+\frac{1}{2} t^{2}\end{aligned}$
Circular motion at constant speed $a=v^{2} / r=\omega^{2} r$ (Centripetal acceleration, points towards center of circle, ω is angular speed in radians per second)
Adding relative velocities ("wrt" is short for "with respect to"): $\underset{\substack{\mathbf{v}_{A} \\ B}}{w_{B}}+\underset{\substack{\mathbf{v}_{B} \\ w}}{\substack{c r}}=\underset{\substack{w r t \\ c}}{ }$
$\Sigma \mathbf{F}=0 \Leftrightarrow \mathbf{a}=0 \quad$ (Newton's first law)
$\mathbf{F}=$ ma or $\mathbf{F}=\mathrm{dp} / \mathrm{dt} \quad$ (Newton's second law) $\mathbf{F}_{\mathrm{AB}}=-\mathbf{F}_{\mathrm{BA}} \quad$ (Newton's third law)
$\mathbf{p}=m \mathbf{v} \square$ (momentum)
$\mathbf{J}=\int_{t_{1}}^{t_{2}} \mathbf{F} \mathrm{~d} t=\int_{t_{1}}^{t_{2}} \frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{~d} t=\mathbf{p}_{2}-\mathbf{p}_{1} \quad$ (impulse)
$\mathbf{r}_{\mathrm{cm}}=\frac{\Sigma m_{i} \mathbf{r}_{i}}{\Sigma m_{i}}$ (position of center of mass)
$\mathbf{F}=-\mathrm{kx} \quad$ (spring force) $\quad \mathrm{f} \leq \mu \mathrm{N} \quad$ (Friction force relative to Normal force)
$\mathbf{F}=-\frac{G M m}{r^{2}} \hat{\mathbf{r}} \quad$ (gravitational force between two particles)
$W=\int \mathbf{F} \cdot \mathrm{dr} \quad$ (work done by force \mathbf{F})
$W_{\text {oher }}=\Delta E=E_{F}-E_{I} \quad E=K E+P E \quad$ (work-energy theorem)
$F_{x}=-\frac{\mathrm{d} U}{\mathrm{~d} x} \quad$ (force derived from potential energy)
Potential Energies: $U=\frac{1}{2} k x^{2} \quad$ (spring force)
$U=-\frac{G M m}{r}$ (gravitational, general) $\quad U=m g h \quad$ (gravitational, near Earth)
$\omega=\sqrt{\mathrm{k} / \mathrm{m}} \quad \mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t}+\phi)$
$v=-A \omega \sin (\omega t+\phi) \quad T=2 \pi / \omega$
(Equations for Simple Harmonic Motion)
Physical Constants:
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ Use the approximate value $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ where told to do so.
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Conversion reminder:
π radians $=180^{\circ}$
Lazy Physicist 's Favorite Angle: (to be used when calculators are not allowed):
36.9° and 53.1° are the angles of a $3-4-5$ right triangle so:
$\sin \left(36.9^{\circ}\right)=\cos \left(53.1^{\circ}\right)=0.60 \quad \cos \left(36.9^{\circ}\right)=\sin \left(53.1^{\circ}\right)=0.80$
$\tan \left(36.9^{\circ}\right)=0.75 \quad \tan \left(53.1^{\circ}\right)=1.33$
Solution to a Quadratic Equation: If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

