- Last Lecture

DEnergy and Momentum of rotation
-Today
-More about Momentum of rotation
OImportant Concepts
Kinetic energy of rotation adds a new term to the same energy equation, it does not add a new equation
QMomentum of rotation gives an additional equation
There is the additional complication that the moment of inertia can change.
For particles in orbit, angular momentum gives information about the direction as well as the speed

Angular Momentum for Orbits

© Conserved because gravity points radially so it does not exert any torque.

ЭPoint particle: $\vec{L}=\vec{r} \times \vec{p} \quad|L|=|r||p| \sin \phi$
-Conservation of angular momentum is a separate equation from conservation of energy.

- The resulting equations are:

$$
r_{1} m v_{1} \sin \phi_{1}=r_{2} m v_{2} \sin \phi_{2}
$$

$$
\frac{-G M m}{r_{1}}+\frac{1}{2} m v_{1}^{2}=\frac{-G M m}{r_{2}}+\frac{1}{2} m v_{2}^{2}
$$

Connection of L and E to Orbit

In general, orbits are ellipses: $r_{1}+r_{2}=2 a$
DThe semi-major axis (denoted "a" in drawing) is determined by the total mechanical energy.

〇The semi-minor axis (denoted "b" in drawing) is determined by energy and angular momentum.

L and E and a and b

- Basic equations: $\quad r_{1} m v_{1} \sin \phi_{1}=L=r_{2} m v_{2} \sin \phi_{2}$

$$
\frac{-G M m}{r_{1}}+\frac{1}{2} m v_{1}^{2}=E=\frac{-G M m}{r_{2}}+\frac{1}{2} m v_{2}^{2}
$$

SUbstitute and do algebra to find: $E=\frac{-G M m}{2 a}$
-And also: $b=\frac{L}{\sqrt{-2 m E}}$ (don't forget that $E<0$)

[^0]
[^0]: ## Torque Checklist

 - Make a careful drawing showing where forces act DClearly indicate what axis you are using DClearly indicate whether CW or CCW is positive

 ## - For each force:

 Dif force acts at axis or points to or away from axis, $\tau=0$
 DDraw (imaginary) line from axis to point force acts. If distance and angle are clear from the geometry $\tau=\operatorname{Frsin}(\theta)$
 Draw (imaginary) line parallel to the force. If distance from axis measured perpendicular to this line (lever arm) is clear, then the torque is the force times this distance
 DDon't forget CW versus CCW, is the torque + or -

