- Last Lecture

-Conclusion of Angular Momentum
OToday
-Final Exam Review
©Suggestions
Focus on basic procedures, not final answers Make sure you understand all of the equation sheet Look over the checklists and understand them. ƏWork on practice problems without help or books ∂ Get a good night's sleep.

Important Reminders

-Sorry about the last minute
Mastering Physics problems.
DFinal Exam is next Monday: 9am - noon.
© Question \& Answer Review Sunday 1-4pm 21-2pm
$2-4 \mathrm{pm}$
©Sadly no extra office hours, would not be healthy for you or for me
If you missed the course evaluations and diagnostic exam on Wed, they are available today

Problem-Solving Strategy 4-steps
DDon't try to see your way to the final answer 2 Focus on the physical situation, not the specific question
-Think through the techniques to see which one (or ones) apply to all or part of the situation
∂ Focus on the conditions under which techniques work
DThink carefully about the geometry
OHere is the one place where lots of practice can help
Make sure you are efficient in applying techniques OHere is one place where memorization can help
\qquad

Helpful Hints

DDon't memorize special cases ($\mathrm{N}=\mathrm{mg}$, for example).
DThink about why things you write are true DFor example, never write $f=\mu \mathrm{N}$ without thinking (or preferably writing down) why that is true

D Draw a careful picture.
DThink about special cases $(\theta=0$, for example) to check that you have the geometry correct.
〇Watch out for missing minus signs.

© Problem Solving Tool: Setting up -Make a careful drawing
DThink carefully about all of the forces
〇Chose an axis, put it on your drawing
DThink carefully about the angles
© Problem Solving Tool: Component checklist
QLoop through vectors:
Is there a component?
Ols there an angle facto
Is it sine or cosine?
Is it positive or negative?

Key Kinematics Concepts

〇Change=slope=derivative

$$
v_{x}=\frac{d x}{d t} \quad a_{x}=\frac{d v_{x}}{d t}=\frac{d^{2} x}{d t^{2}}
$$

Ovelocity is the slope of position vs t, acceleration is the slope of velocity vs t and the curvature of position vs t

- Even in simple 1D motion, you must understand the vector nature of these quantities
Initial conditions
© All formulas have assumptions
\qquad 01L IAP 2006

Circular Motion Summary

- Motion in a circle with constant speed and radius is accelerated motion.

DThe velocity is constant in magnitude but changes direction. It points tangentially.
OThe acceleration is constant in magnitude but changes direction. It points radially inward.
DThe magnitude of the acceleration is given by:

$$
|\vec{a}|=\frac{v^{2}}{R}
$$

Properties of Friction - Magnitude

ONot slipping: The magnitude of the friction force can only be calculated from $\sum \vec{F}=m \vec{a}$. However, it has a maximum value of $|f| \leq \mu_{s} N$
Ə Just about to slip: $|f|=\mu_{c} N$ where N is the Normal force and $\boldsymbol{\mu}_{s}$ is the coefficlent of static friction which is a constant that depends on the surfaces

- Slipping: $|f|=\mu_{k} N$ where N is the Normal force and $\boldsymbol{\mu}_{k}$ is the coefficfent of kinetic friction which is a constant that depends on the surfaces

D Note: $\mu_{s} \geq \mu_{k}$
|AP 2006

Newton's Three Laws

1) If ∇ is constant, then $\Sigma \vec{F}$ must be zero and if $\Sigma \vec{F}=0$, then ∇ must be constant.

2) $\sum \vec{F}=m \vec{a}$

3) Force due to object A on object B is always exactly equal in magnitude and always exactly opposite in direction to the force due to object B on object A .

Some Advice

- Your instincts are often wrong. Be careful!
- $\sum \vec{F}=m \vec{a}$ is your friend. Trust what it tells you.

PProblem Solving Tool:(Revised)Free-Body Checklist

© Draw a clear diagram of (each) object
D Think carefully about all of the forces on (each) object
2 Think carefully about the angles of the forces

- Chose an axis, put it on your drawing

D Think carefully about the acceleration and put what you know on your drawing
© Calculate components: $\sum_{x}=m a_{x} \quad \sum F_{y}=m a_{y} \ldots$
D Solve...

Properties of Spring Force

The direction is always unambiguous!
In for stretched spring, out for compressed spring.
© The magnitude is always unambiguous!

$$
\geqslant|\mathrm{F}|=\mathrm{k}\left(\ell-\ell_{0}\right)
$$

ЭTwo possibilities for confusion.
〇Double negative: Using $\mathrm{F}=-\mathrm{kx}$ where it doesn't belong DForgetting the "unstretched length", ℓ_{0}

Work done by a Force

D Not a vector quantity（but vector concepts needed to calculate its value）．

DDepends on both the direction of the force and the direction of the motion
DFour ways of saying the same thing
DForce times component of motion along the force．
DDistance times the component of force along the motion． $\partial W=\Sigma|\mathrm{F}||\mathrm{d}| \cos (\theta)$ where θ is the angle between F and d ． － $\mathrm{W}=\int \vec{F} \cdot d$ swhere the＂s＂vector is along the path

Checklist to use Work／Energy

©Clearly define what is＂inside＂your system．
©Clearly define the initial and final conditions，which include the location and speed of all object（s）
OThink carefully about all forces acting on all objects
DAll forces must be considered in the Work term or in the Potential Energy term，but never in both．

$$
\begin{aligned}
W & =\Delta E=E_{\text {Final }}-E_{\text {Initial }} \\
& =\left(K E_{\text {Final }}+P E_{\text {Final }}\right)-\left(K E_{\text {Initial }}+P E_{\text {Initial }}\right)
\end{aligned}
$$

Work／Energy Summary

D $W=\Delta E=E_{F}-E_{I} \quad E=P E+K E \quad K E=\frac{1}{2} m v^{2}$
© $P E_{\text {gravily }}=m g y P E_{\text {spring }}=+\frac{1}{2} k\left(L-l_{0}\right)^{2}$
つ $W=\int \vec{F} \cdot d \vec{s} \quad|W|=|F||d s| \cos (\theta)$
Э Every force goes in the work term or in the PE
D Minima and maxima of the PE correspond to $\mathrm{F}=0$ ， which are equilibrium points．PE minima are stable equilibrium points，maxima are unstable．

Momentum

ƏVery simple formula：$\vec{p}_{\text {Tot }}=\Sigma\left(m_{i} \vec{v}_{i}\right)$
〇Note the vector addition！
D Momentum of a system is conserved only if： 2 No net external forces acting on the system． ƏOr，study the system only over a very short time span．

$$
\Delta \vec{p}_{T o t}=\int \vec{F} d t
$$

Simple Harmonic Motion－Summary

－Basics：$F_{x}=-k x=m d^{2} x / d t^{2}$
〇General solution：$x=A \cos (\omega t+\phi) \quad \omega=\sqrt{k / m}$
〇Practical solutions：

$$
\begin{aligned}
& \text { } \mathrm{t}=0 \text { when position is maximum } x=A \cos (\omega t) \\
& \text { and therefore } \mathrm{v}=0 \quad \phi=0 \quad v_{x}=-A \omega \sin (\omega t) \\
& a_{x}=-A \omega^{2} \cos (\omega t) \\
& \theta \mathrm{t}=0 \text { when speed is maximum } \quad x=A \sin (\omega t) \\
& \begin{array}{lll}
\text { and therefore } \mathrm{a}=0 \\
\text { and therefore } \mathrm{x}=0
\end{array} \quad \phi=\frac{\pi}{2} \quad v_{x}=A \omega \cos (\omega t) \\
& \text { and therefore } \mathrm{x}=0 \quad \phi=\frac{\overline{2}}{2} \quad \begin{array}{l}
d_{x}=A \omega \cos (\omega t) \\
a_{x}=-A \omega^{2} \sin (\omega t)
\end{array}
\end{aligned}
$$

[^0]
Some Derived Results

D Found from applied F=ma
-Pressure versus height (if no flow):

$$
\begin{aligned}
& P_{2}-P_{1}=-\rho g\left(y_{2}-y_{1}\right) \quad y \text { is positive upward } \\
& P=P_{0}+\rho g h
\end{aligned}
$$

〇Buoyancy forces (causes things to float):
$F_{B}=\rho_{\text {fuud }} g V_{\text {disp }} V_{\text {disp }}$ is the volume of fluid displaced
$\frac{V_{\text {submerged }}}{V_{\text {object }}}=\frac{\rho_{\text {object }}}{\rho_{\text {fuud }}}$
8.01L IAP 2006

Torque

-How do you make something rotate? Very intuitive! OLarger force clearly gives more "twist".
PForce needs to be in the right direction (perpendicular to a line to the axis is ideal).
DThe "twist" is bigger if the force is applied farther away from the axis (bigger lever arm).
In math-speak: $\vec{\tau}=\vec{r} \times \vec{F} \quad|\tau|=|r||F| \sin (\phi)$

Ideal Gas law

-Physicist's version: $P V=N k T$
$\partial \mathrm{N}=$ number of molecules or separate atoms
-Boltzman constant: $k=1.38 \times 10^{-23}$ Joule $/{ }_{K}$ per molecule
Chemist's version: $P V=n R T$
On=number of moles
DAvogadro's number: 1 mole $=6.0 \times 10^{23}$ atoms or molecules
DDifferent constant: $R=8.3$ Joules $/{ }_{K}$ per mole

Right Hand Rules

For angular quantities: θ, ω, τ
\rightleftharpoons Curl the fingers of your right hand in the direction of the motion or acceleration or torque and your thumb points in the direction of the vector quantity.
DThe vector direction for "clockwise" quantities is "into the page" and "counterclockwise" is "out of the page"
©Vector cross-products (torque, angular momentum of point particle) generally $A \times B$
2Point the fingers of your right hand along the first vector, curt your fingers to point along second vector, your thumb points in the direction of the resulting vector

Moment of Inertia

〇Most easily derived by considering Kinetic Energy (to be discussed next week).
$\supset I=\Sigma m_{i} r_{i}^{2}=\int r^{2} d m$
-Some simple cases are given in the textbook on page 342, you should be able to derive those below except for the sphere. Will be on formula sheet.

OHoop (all mass at same radius) $\quad 1=\mathrm{MR}^{2}$
Solid cylinder or disk $\mathrm{I}=(1 / 2) \mathrm{MR}^{2}$
QRod around end $I=(1 / 3) \mathrm{ML}^{2}$
\geqslant Rod around center $\mathrm{I}=(1 / 12) \mathrm{ML}^{2}$
$\operatorname{OSphere} \mathrm{I}=(2 / 5) \mathrm{MR}^{2}$
ILAP 2006

Parallel Axis Theorum

- Very simple way to find moment of inertia for a large number of strange axis locations.

$\partial I_{1}=I_{\text {c.m. }}+M d^{2} \quad$ where M is the total mass.

Everything you need to know for Linear \& Rotational Dynamics

- $\Sigma \vec{F}=M \vec{a}$
$\partial \Sigma \vec{\tau}=I \vec{\alpha}$
9This is true for any fixed axis and for an axis through the center of mass, even if the object moves or accelerates.

PRolling without slipping: $v=R \omega \quad a=R \alpha \quad f \neq \mu N$ PFriction does NOT do work!

DRolling with slipping: $v \neq R \omega \quad a \neq R \alpha \quad f=\mu N$ PFriction does work, usually negative.
QRarely solvable without using force and torque equations!

Kinetic Energy with Rotation

DAdds a new term not a new equation!
DRotation around any fixed pivot: $K E=\frac{1}{2} I_{\text {pivot }} \omega^{2}$
\Rightarrow Moving and rotating: $K E=\frac{1}{2} I_{C M} \omega^{2}+\frac{1}{2} M_{T o t} v_{C M}^{2}$

Pendulums

Dimple pendulum: Small mass at the end of a string SPeriod is $T=2 \pi \sqrt{l / g}$ where l is the length from the pivot to the center of the object.

DPhysical pendulum: More complex object rotating about any pivot
PPeriod is $T=2 \pi \sqrt{I / M g l}$ where l is the distance from the pivot to the center of mass of the object, \boldsymbol{M} is the total mass, and I is the moment of inertia around the pivot.

Angular Momentum

© Conserved when external torques are zero or when you look over a very short period of time.
TTrue for any fixed axis and for the center of mass
FFormula we will use is simple: $\vec{L}=I \vec{\omega}$
-Vector nature (CW or CCW) is still important
DPoint particle: $\vec{L}=\vec{r} \times \vec{p}$
\rightleftharpoons Conservation of angular momentum is a separate equation from conservation of linear momentum
Angular impulse: $\vec{\tau}=\frac{d \vec{L}}{d t} \quad \Delta \vec{L}=\int \vec{\tau} d t$
.01L IAP 2006

[^0]: Gravity Summary
 Ə Numerical constant：$G=6.673 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
 －Force：$F_{G}=-\frac{G M_{1} M_{2}}{r^{2}} \hat{r}$
 DEnergy：$P E(r)=-\frac{G M_{1} M_{2}}{r}$
 －Escape velocity：$E_{\text {Toal }}=K E+P E=0$

