
 

         
 

       
       

          
         

 
 

    
 

            
  

 

 
    

  

 
         

 
 

    
 

        
         

         

14.4 Change in Potential Energy and Zero Point for Potential Energy 

We already calculated the work done by different conservative forces: constant gravity 
near the surface of the earth, the spring force, and the universal gravitation force. We 
chose the system in each case so that the conservative force was an external force. In 
each case, there was no change of potential energy and the work done was equal to the 
change of kinetic energy, 

W = ΔK . (14.4.1)ext sys 

We now treat each of these conservative forces as internal forces and calculate the change 
in potential energy of the system according to our definition 

B  
ΔU sys = −W c = −∫F
 ⋅ dr .
 (14.4.2)
c 
A 

We shall also choose a zero reference potential for the potential energy of the system, so 
that we can consider all changes in potential energy relative to this reference potential. 

14.4.1 Change in Gravitational Potential Energy Near Surface of the Earth 

Let’s consider the example of an object falling near the surface of the earth. Choose our 
system to consist of the earth and the object. The gravitational force is now an internal 
conservative force acting inside the system. The distance separating the object and the 
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center of mass of the earth, and the velocities of the earth and the object specifies the 
initial and final states. 

Let’s choose a coordinate system with the origin on the surface of the earth and the + y -
direction pointing away from the center of the earth. Because the displacement of the 
earth is negligible, we need only consider the displacement of the object in order to 
calculate the change in potential energy of the system. 

Suppose the object starts at an initial height yi above the surface of the earth and ends at 
 

final height y f . The gravitational force on the object is given by Fg = −mg ĵ , the 

displacement is given by dr  = dy ĵ , and the scalar product is given by 
 
Fg ⋅ dr  = −mg ĵ ⋅ dyĵ = −mgdy . The work done by the gravitational force on the object is 
then 

y f y f
W g = ∫ Fg ⋅ dr = ∫ −mg dy = −mg(yf − yi ) . (14.4.3) 

yi ) yi ) 

The change in potential energy is then given by 

ΔU g = −W g = mg Δy = mg y − mg y (14.4.4)f i . 

We introduce a potential energy function U so that 

ΔU g ≡ U gf − Ui
g . (14.4.5) 

Only differences in the function U g have a physical meaning. We can choose a zero 
reference point for the potential energy anywhere we like. We have some flexibility to 
adapt our choice of zero for the potential energy to best fit a particular problem. Because 
the change in potential energy only depended on the displacement, Δy . In the above 
expression for the change of potential energy (Eq. (14.4.4)), let y f = y be an arbitrary 

point and yi = 0 denote the surface of the earth. Choose the zero reference potential for 
the potential energy to be at the surface of the earth corresponding to our origin y = 0 , 
with U g (0) = 0 . Then 

ΔU g = U g ( y) − U g (0) = U g ( y) . (14.4.6) 

Substitute yi = 0 , y f = y and Eq. (14.4.6) into Eq. (14.4.4) yielding a potential energy as 
a function of the height y above the surface of the earth, 

U g ( y) = mgy, with U g ( y = 0) = 0 . (14.4.7) 
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14.4.2 Hooke’s Law Spring-Object System 

Consider a spring-object system lying on a frictionless horizontal surface with one end of 
the spring fixed to a wall and the other end attached to an object of mass m (Figure 
14.7). The spring force is an internal conservative force. The wall exerts an external force 
on the spring-object system but since the point of contact of the wall with the spring 
undergoes no displacement, this external force does no work. 

Figure 14.7 A spring-object system. 

Choose the origin at the position of the center of the object when the spring is 
relaxed (the equilibrium position). Let x be the displacement of the object from the 
origin. We choose the +î unit vector to point in the direction the object moves when the 
spring is being stretched (to the right of x = 0 in the figure). The spring force on a mass  
is then given by Fs = Fx

s î = −kx ̂i . The displacement is dr  = dx ̂i . The scalar product is 
 
F ⋅ dr  = −kx î ⋅ dx î = −kx dx . The work done by the spring force on the mass is 

x=x f x=x f  1 1 1
W s = F⋅ dr = − − (−kx) dx = − k(x f 

2 − xi 
2 ) . (14.4.8)∫ ∫2 2 2 x=xi x=xi 

We then define the change in potential energy in the spring-object system in moving the 
object from an initial position xi from equilibrium to a final position x f from 
equilibrium by 

ΔU s ≡ U s (x f ) − U s (xi ) = −W s = 
1 

k(x2 
f − xi 

2 ) . (14.4.9)
2 

Therefore an arbitrary stretch or compression of a spring-object system from equilibrium 
xi = 0 to a final position x f = x changes the potential energy by 

ΔU s = U s (x f ) − U s (0) = 
1 

k x2 . (14.4.10)
2 
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For the spring-object system, there is an obvious choice of position where the potential 
energy is zero, the equilibrium position of the spring- object, 

U s (0) ≡ 0 . (14.4.11) 

Then with this choice of zero reference potential, the potential energy as a function of the 
displacement x from the equilibrium position is given by 

U s (x) = 
1 

k x2 , with U s (0) ≡ 0 . (14.4.12)
2 

14.4.3 Inverse Square Gravitation Force 

Consider a system consisting of two objects of masses m1 and m2 that are separated by a 
center-to-center distance A coordinate system is shown in the Figure 14.8. The r2,1 . 
internal gravitational force on object 1 due to the interaction between the two objects is 
given by 

 
G G m1 m2
F2 ,1 = − 2 r̂2 ,1 . (14.4.13)


r2 ,1 

The displacement vector is given by dr 2,1 = dr2,1 r̂2,1 . So the scalar product is 


F2 1, 

G G m1 m2 G m1 m2ˆ ˆr2 ,1 r2 ,1 


⋅ d = −
 ⋅ dr2 ,1 = −
 dr2 ,1 (14.4.14)
r2 ,1 .
2r2 ,1 
2r2 ,1 

Figure 14.8 Gravitational interaction 

Using our definition of potential energy (Eq. (14.3.4)), we have that the change in the 
gravitational potential energy of the system in moving the two objects from an initial 
position in which the center of mass of the two objects are a distance ri apart to a final 
position in which the center of mass of the two objects are a distance rf apart is given by 
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B  f G m m G m m
rf G m m G m mG  1 2 1 2 1 2 1 2= − + . (14.4.15)ΔU G = − ⋅ d = − − = −∫F2,1 r2,1 ∫ 2 dr2,1
 

A r2,1 
r2,1
 

rf riri ri 

We now choose our reference point for the zero of the potential energy to be at infinity, 
ri = ∞ , with the choice that U G (∞) ≡ 0 . By making this choice, the term 1/ r in the 
expression for the change in potential energy vanishes when ri = ∞ . The gravitational 
potential energy as a function of the relative distance r between the two objects is given 
by 

G m1 m2U G (r) = − , with U G (∞) ≡ 0 . (14.4.16)
r 
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