MITOCW | MIT8_01F16_L29DD01_360p

I would now like to calculate the moment of inertia of a uniform sphere.
And it has a mass m and radius r.

I'm going to look at three axes.

So l'll call this the x-axis, the y-axis, and the z-axis.

And first, let's calculate the moment about the z-axis.

So if I write down our definition, and I'm going to calculate it about the center of mass, so the moment about the zaxis.

How do we do that?

Well, we take a mass element, and have to be a little bit careful here.

Because if you think about what is our [? perp ?] for this mass element, it's actually x squared plus y squared, squared.

So the distance here, because it's going in a circle, the radius of that circle is x squared plus y squared.

So we have x squared plus y squared, and we're integrating over the sphere.

Now, this looks like a tough integral.

But let's now look at what would the moment of inertia be about the x-axis?

Well, the only difference here is I'm integrating now, first, if it's rotating about this axis, and I had my mass element, instead of x squared plus y squared about the z-axis, it's y squared plus z squared about the x-axis.

That's the perpendicular distance.

And if I calculate the moment of inertia about the y-axis, then same argument-- I have z squared plus x squared.

Now, the beauty of this problem-- and in physics, when we talk about beauty, we often talk about symmetry-- is that by the symmetry of the sphere, all of these moments are equal.

And let's call that I cm.

Now, if I add these three pieces together, what do I get?

So if I add I cm z plus I cm x plus I cm y, I get 3 times the moment about the center of the axes.

So what happens when I add these three integrals?

I get dm.

If you'll notice, x squared appears twice, y squared appears twice, and z squared appears twice.

So we get 2 times x squared plus y squared plus z squared.

But x squared plus y squared plus z squared is the radius of a small sphere of thickness dr .

And my mass element-- now I have to integrate over the sphere.

And so now our mass element, dm , is the volume density of this times the volume.

Now what is the volume density?

Well, that's the total mass over $4 / 3$ pi r cubed.

And what is the volume of a sphere of radius r and thickness $d r$?

That's 4 pir squared dr.

So if I put that into my expression, what I get-- let's just get rid of the 4 pi's, and I get 3 m over r cubed times r squared dr.

And so our 3 Icm , I have a factor of 2, this integral becomes 2 times dm times r squared.

And the $d m$ is $3 m r$ cubed r squares $d r$ times another r squared.

And what are we integrating over are r variable from?

These spherical shells that we're integrating outward go from r equal 0 to r equal capital R.

Notice that our 3 m's cancel.

And we'll just write this is I cm equals factor 2 times m over r cubed times the integral of r to the fourth $d r$ from zero to R. And that's a simple integral to do.
r to the fourth is r to the fifth divided by 5 .

And so we get 2 over $5 \mathrm{~m} R$ to the fifth over R cubed.

And we conclude that the moment of inertia about any of the axes of the sphere is $2 / 5 \mathrm{~m} \mathrm{R}$ squared.

And in this calculation, it's a beautiful example of how we use the symmetry of the sphere to simplify very complicated integrals.

