MITOCW | MIT8_01F16_L27v04_360p

We now would like to apply our energy momentum rule and momentum to analyze a one-dimensional elastic collision with no external forces.

Let's remind ourselves, we'll call it the energy momentum equation said that V relative initial was equal to V relative final.

So we have V1x initial minus V2x initial-- that's the x component of initial relative velocity-- is equal to the final x component of the relative velocity.

And that was our energy momentum law.

Now the momentum condition that it's constant was our equation V 1 x initial plus m 2 V 2 x initial equals m 1 V 1 x final plus m2 V2x final.

Now let's see how this linear system is much, much easier to solve.

Let's look at the same problem that we solved before where m 2 was equal 2 m 1 .

And also, we were in the laboratory frame, so V2x initial is 0 .

And that tells us that the initial velocity, relative velocity, is simply the velocity of object 1 .

So let's just write our two equations down again and see how much simpler our system is.

V 1 x x initial is minus V 1 x final plus V 2 x final.

So we have minus plus.

And our momentum condition, remember V2x initial is 0 .

The m 1 and $1, \mathrm{~m} 2$ will be 2 m 1 .

So we can cancel our m1s.

And we get V 1 x initial equals V 1 x final.

And m 2 is twice m 1 , so there's a factor plus 2 V 2 x final.

Now I want to solve for our target variable.

I look at these two equations.

I can see almost immediately that if I add these two equations, V1x initial will cancel.

And I get very simply by adding, we get 2 V 1 x initial.

And this is 3 V 2 x final.

Or V2x final is $2 / 3 \mathrm{~V} 1 \mathrm{x}$ initial.

And let's just call this equation 1 and 2.

So we added.

And now to find V1x final, let's see what we'll do there.

So we can do this a variety of different ways.

I think the simplest thing here to do, we could eliminate V2x final by multiplying through by minus 2.

Or we can simply substitute in V 2 x final right here.

And we get-- so let's do that.

Let's substitute that in right there.

And we get V 1 x initial equals V 1 x final plus 2 times $2 / 3 \mathrm{~V} 1 \mathrm{x}$ initial.

When we bring that over to the other side, 1 minus $4 / 3$ is minus $1 / 3 \mathrm{~V} 1 \mathrm{x}$ initial equals V 1 x final.

And at the cost of introducing a new concept, we've found the algebra much, much simpler to solve in this problem.

And we can just double check our result that the initial velocity, relative velocity, was simply $\mathrm{V} \times 1$.

And the final relative velocity, V relative final, is minus V 1 x final minus-- let's see, the final relative velocity is V 1 x final V2x final i hat.

And when we put that in, we have minus $1 / 3 \mathrm{~V} 1 \mathrm{x}$ initial minus $2 / 3 \mathrm{~V} 1 \mathrm{x}$ initial i hat.

And we have minus V 1x initial i hat, which is minus V relative initial.

And so we see that the relative velocity simply changed direction.

This approach is much, much easier.

And keep in mind that the energy momentum and the momentum laws are just rewriting our two fundamental constants of motion, kinetic energy and momentum.

