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Chapter 15 Collision Theory 

Despite my resistance to hyperbole, the LHC [Large Hadron Collider] 
belongs to a world that can only be described with superlatives. It is not 
merely large: the LHC is the biggest machine ever built. It is not merely 
cold: the 1.9 kelvin (1.9 degrees Celsius above absolute zero) temperature 
necessary for the LHC’s supercomputing magnets to operate is the coldest 
extended region that we know of in the universe—even colder than outer 
space. The magnetic field is not merely big: the superconducting dipole 
magnets generating a magnetic field more than 100,000 times stronger than 
the Earth’s are the strongest magnets in industrial production ever made. 

And the extremes don’t end there. The vacuum inside the proton-containing 
tubes, a 10 trillionth of an atmosphere, is the most complete vacuum over 
the largest region ever produced. The energy of the collisions are the highest 
ever generated on Earth, allowing us to study the interactions that occurred 
in the early universe the furthest back in time.1 

Lisa Randall 

15.1 Introduction 

When discussing conservation of momentum, we considered examples in which two 
objects collide and stick together, and either there are no external forces acting in some 
direction (or the collision was nearly instantaneous) so the component of the momentum 
of the system along that direction is constant. We shall now study collisions between 
objects in more detail. In particular we shall consider cases in which the objects do not 
stick together. The momentum along a certain direction may still be constant but the 
mechanical energy of the system may change. We will begin our analysis by considering 
two-particle collision. We introduce the concept of the relative velocity between two 
particles and show that it is independent of the choice of reference frame. We then show 
that the change in kinetic energy only depends on the change of the square of the relative 
velocity and therefore is also independent of the choice of reference frame. We will then 
study one- and two-dimensional collisions with zero change in potential energy. In 
particular we will characterize the types of collisions by the change in kinetic energy and 
analyze the possible outcomes of the collisions. 

15.2 Reference Frames and Relative Velocities 
 

We shall recall our definition of relative inertial reference frames. Let R be the 
vector from the origin of frame S to the origin of reference frame S ′ . Denote the 

1 Randall, Lisa, Knocking on Heaven's Door: How Physics and Scientific Thinking Illuminate the Universe 
and the Modern World, Ecco, 2011. 
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position vector of the j th particle with respect to the origin of reference frame S by rj 

j th and similarly, denote the position vector of the particle with respect to the origin of 
reference frame S ′ by r ′ j (Figure 15.1). 

S 

rj 

jth particle 

rj 

S 
R 

Figure 15.1 Position vector of j th particle in two reference frames. 

The position vectors are related by 
rj = 
 r′ j + 
 
R . (15.2.1) 

The relative velocity (call this the boost velocity) between the two reference frames is 
given by  dRV = . (15.2.2) dt 

Assume the boost velocity between the two reference frames is constant. Then, the 
relative acceleration between the two reference frames is zero, 

 dVA = = 0 . (15.2.3) dt 

When Eq. (15.2.3) is satisfied, the reference frames S and S ′ are called relatively 
inertial reference frames. 

j th Suppose the particle in Figure 15.1 is moving; then observers in different 
reference frames will measure different velocities. Denote the velocity of j th particle in 

frame S by v j = dr  j / dt , and the velocity of the same particle in frame S ′ by 
 v′ j = dr ′ j / dt . Taking derivative, the velocities of the particles in two different reference 
frames are related according to  

   
v j = v′ j + V . (15.2.4) 
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15.2.1 Relative Velocities 

Consider two particles of masses m1 and m2 interacting via some force (Figure 15.2). 

Figure 15.2 Two interacting particles 

Choose a coordinate system (Figure 15.3) in which the position vector of body 1 is given  by r1 and the position vector of body 2 is given by r2 . The relative position of body 1 
  with respect to body 2 is given by r1 2, = r1 − r2 . 

 

Figure 15.3 Coordinate system for two bodies. 

During the course of the interaction, body 1 is displaced by dr1 and body 2 is displaced 
by dr2 , so the relative displacement of the two bodies during the interaction is given by 

  dr1 2, = dr1 − dr2 . The relative velocity between the particles is 

  
 dr1 2, dr1 dr2   v1 2, = = − = v1 − v2 . (15.2.5) 

dt dt dt 

We shall now show that the relative velocity between the two particles is independent of 
the choice of reference frame providing that the reference frames are relatively inertial. The relative velocity v12 ′ in reference frame S ′ can be determined from using Eq. 
(15.2.4) to express Eq. (15.2.5) in terms of the velocities in the reference frame S ′ , 

v1 ′ v1, 2 ′ = v1v1, 2 −  v2 = (v  1 ′ + V) − (v  ′ 2 + 
 
V) = − 

 v′ 2 = (15.2.6) 
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and is equal to the relative velocity in frame S . 

For a two-particle interaction, the relative velocity between the two 
vectors is independent of the choice of relatively inertial reference frames. 

15.2.2 Center-of-mass Reference Frame 

Let  r cm be the vector from the origin of frame S to the center-of-mass of the 
system of particles, a point that we will choose as the origin of reference frame S cm , 

called the center-of-mass reference frame. Denote the position vector of the j th particle 
with respect to origin of reference frame S by  rj and similarly, denote the position 

vector of the j th particle with respect to origin of reference frame S cm by ′rj (Figure 
15.4). 

S cm 

r cm 

rj 

jth particle 

rj 

S 

Figure 15.4 Position vector of j th particle in the center-of-mass reference frame. 

th jThe position vector of the particle in the center-of-mass frame is then given by 

 

  − 
 r′ j = rj r . (15.2.7) cm 

The velocity of the j th particle in the center-of-mass reference frame is then given by 

  − 
 v′ j = v j v . (15.2.8) cm 

There are many collision problems in which the center-of-mass reference frame is the 
most convenient reference frame to analyze the collision. 

Consider a system consisting of two particles, which we shall refer to as particle 1 and 
particle 2. We can use Eq. (15.2.8) to determine the velocities of particles 1 and 2 in the 
center-of-mass, 

µv1 ′ −  v cm = v1 − 
 m1v1 + m2v2 m2= 

m1 + m2 m1 + m2 

( v1, −
 v2 ) = 

m1 

 v1, 2 . 
 (15.2.9) = v1 
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where v12 = 
v1 −
v2 is the relative velocity of particle 1 with respect to particle 2 . A 

similar result holds for particle 2 : 

v′ 2 
 −  v cm = v2 − 

m1v1 + m2v2 m1= − 
 

m1 + m2 m1 + m2 

( v1 −
 v2 ) = − 

µ 
m2 

 v1, 2 . (15.2.10)  v2 = 

The momentum of the system the center-of-mass reference frame is zero as we expect, 

     
m1v1 ′ + m2v′ 2 = µ − µ = 0 . (15.2.11) v12 v12 

15.2.3 Kinetic Energy in the Center-of-Mass Reference Frame 

The kinetic energy in the center of mass reference frame is given by 

1  1 Kcm = m1v1 ′ ⋅ v  1 ′ + m2v′ 2 ⋅ v  ′ 2 . (15.2.12) 
2 2 

We now use Eqs. (15.2.9) and (15.2.10) to rewrite the kinetic energy in terms of the
relative velocity v  12 ′ = v1 ′ − v  ′ 2 , 

⎛ ⎞ ⎛ ⎞ 1 ⎛ ⎞ ⎛ 

⎠⎟
⋅ − 

µ ⎞1 v v v vµ 
m1 

µ 
m1 

− 
µK 

⎠⎟ 
⋅ 
⎝⎜ ⎠⎟ 

+m1 m2 = 
⎝⎜ ⎝⎜ ⎝⎜ ⎠⎟1, 2 1, 2 1, 2 1, 2 2 2cm m2 m2 . (15.2.13) 

⎛ 1 1 ⎞1 1v v2 2⋅ 
⎝⎜ 

+ 
m1 m2 ⎠

⎟ =µ µv1, 2 = 1, 2 1, 2 2 2 

where we used the fact that we defined the reduced mass by 

1 1 1≡ + . (15.2.14) 
µ m1 m2 

15.2.4 Change of Kinetic Energy and Relatively Inertial Reference Frames 

The kinetic energy of the two particles in reference frame S is given by 

KS = 
1 m1v1

2 + 
1 m2v2

2 . (15.2.15) 
2 2 

We can take the scalar product of Eq. (15.2.8) to rewrite Eq. (15.2.15) as 
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1     1    KS = m1(v1 ′ + v ) ⋅(v1 ′ + v ) + m2(v′ 2 + v ) ⋅(v′ 2 + v )cm cm cm cm 2 2 . (15.2.16) 
1 1 1    = 2+ 2+ )v 2 + (m1 ) ⋅ vm1v1 ′ m2v2 ′ (m1 + m2 cm v1 ′ + m2v′ 2 cm 2 2 2 

The last term is zero due to the fact that the momentum of the system in the center of 
mass reference frame is zero (Eq. (15.2.11)).  Therefore Eq. (15.2.16) becomes 

1 1 1 2KS = m1v1 ′ 
2+ m2v2 ′ 

2+ (m1 + m2 )v . (15.2.17) 
2 2 2 cm 

The first two terms correspond to the kinetic energy in the center of mass frame, thus the 
kinetic energies in the two reference frames are related by 

KS = K + 
1 (m1 + m2 )v 2 . (15.2.18) cm cm 2 

We now use Eq. (15.2.13) to rewrite Eq. (15.2.18) as 

1 1 2KS = 2 + (m1 + m2 )v (15.2.19) µv1, 2 cm 2 2 

Even though kinetic energy is a reference frame dependent quantity, because the second 
term in Eq. (15.2.19) is a constant, the change in kinetic energy in either reference frame 
is equal to 

1 2 2ΔK = µ(( ) − ( ) ) . (15.2.20) v1, 2 v1, 2 2 f i 

This generalizes to any two relatively inertial reference frames because the relative 
velocity is a reference frame independent quantity, 

the change in kinetic energy is independent of the choice of relatively 
inertial reference frames. 

We showed in Appendix 13A that when two particles of masses m1 and m2 interact, the 
work done by the interaction force is equal to 

1 2 2W = µ(( ) − ( ) ) . (15.2.21) v1, 2 v1, 2 2 f i 

Hence we explicitly verified that for our two-particle system 

W = ΔKsys . (15.2.22) 
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15.3 Characterizing Collisions 

In a collision, the ratio of the magnitudes of the initial and final relative velocities is 
called the coefficient of restitution and denoted by the symbol e , 

vBe = . (15.3.1) 
vA 

If the magnitude of the relative velocity does not change during a collision, e = 1, then 
the change in kinetic energy is zero, (Eq. (15.2.21)). Collisions in which there is no 
change in kinetic energy are called elastic collisions, 

ΔK = 0, elastic collision . (15.3.2) 

If the magnitude of the final relative velocity is less than the magnitude of the initial 
relative velocity, e < 1, then the change in kinetic energy is negative. Collisions in which 
the kinetic energy decreases are called inelastic collisions, 

ΔK < 0, inelastic collision . (15.3.3) 

If the two objects stick together after the collision, then the relative final velocity is zero, 
e = 0 . Such collisions are called totally inelastic. The change in kinetic energy can be 
found from Eq. (15.2.21), 

1 2 1 m1m2 2ΔK = − µ vA = − vA , totally inelastic collision . (15.3.4) 
2 2 m1 + m2 

If the magnitude of the final relative velocity is greater than the magnitude of the initial 
relative velocity, e > 1, then the change in kinetic energy is positive. Collisions in which 
the kinetic energy increases are called superelastic collisions, 

ΔK > 0, superelastic collision . (15.3.5) 

15.4 One-Dimensional Collisions Between Two Objects 

15.4.1 One Dimensional Elastic Collision in Laboratory Reference Frame 

Consider a one-dimensional elastic collision between two objects moving in the x -
direction. One object, with mass m1 and initial x -component of the velocity v1x ,i , 

collides with an object of mass m2 and initial x -component of the velocity v2x ,i . The 

scalar components v1x ,i and v1x ,i can be positive, negative or zero. No forces other than 
the interaction force between the objects act during the collision. After the collision, the 
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final x -component of the velocities are v1x , f and v2 x , f . We call this reference frame the 
“laboratory reference frame”. 

Figure 15.5 One-dimensional elastic collision, laboratory reference frame 

For the collision depicted in Figure 15.5, v1x ,i > 0 , v2x ,i < 0 , v1x , f < 0 , and v2 x , f > 0 . 
Because there are no external forces in the x -direction, momentum is constant in the x -
direction. Equating the momentum components before and after the collision gives the 
relation 

m1v1x , i + m2v2 x , i = m1v1x , f + m2v2x , f . (15.4.1) 

Because the collision is elastic, kinetic energy is constant. Equating the kinetic energy 
before and after the collision gives the relation 

1 1 1 12 2 2 2m1v1x ,i + m2v2x ,i = m1v1x , f + m2v2 x , f (15.4.2) 
2 2 2 2 

Rewrite these Eqs. (15.4.1) and (15.4.2) as 

m1(v1x ,i − v1x , f ) = m2(v2 x , f − v2x ,i ) (15.4.3) 
2 2 2 2m1(v1x ,i − v1x , f ) = m2(v2 x , f − v2x ,i ) . (15.4.4) 

Eq. (15.4.4) can be written as 

m1(v1x ,i − v1x , f )(v1x ,i + v1x , f ) = m2(v2 x , f − v2x ,i )(v2 x , f + v2x ,i ) . (15.4.5) 

Divide Eq. (15.4.4) by Eq. (15.4.3), yielding 

v1x ,i + v1x , f = v2 x ,i + v2x , f . (15.4.6) 
Eq. (15.4.6) may be rewritten as 

v1x ,i − v2 x ,i = v2x , f − v1x , f . (15.4.7) 

Recall that the relative velocity between the two objects is defined to be 

v rel ≡ v ≡ v − v2 . (15.4.8) 1,2 1 
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where we used the superscript “rel” to remind ourselves that the velocity is a relative 
velocity (and to simplify our notation). Thus vx 

rel 
,i = v1x ,i − v2 x ,i is the initial x -component 

of the relative velocity, and vx 
rel 
, f = v1x , f − v2 x , f is the final x -component of the relative 

velocity. Therefore Eq. (15.4.7) states that during the interaction the initial relative 
velocity is equal to the negative of the final relative velocity 

 rel rel v i = −v  f , (1− dimensional energy-momentum prinicple) . (15.4.9) 

Consequently the initial and final relative speeds are equal. We shall call this relationship 
between the relative initial and final velocities the one-dimensional energy-momentum 
principle because we have combined these two principles to realize this result. The 
energy-momentum principle is independent of the masses of the colliding particles. 

Although we derived this result explicitly, we have already shown that the change in 
kinetic energy for a two-particle interaction (Eq. (15.2.20)), in our simplified notation is 
given by 

1 rel ) f 
rel )i 

2 )ΔK = µ((v 2 − (v (15.4.10) 
2 

Therefore for an elastic collision where ΔK = 0 , the square of the relative speed remains 
constant 

rel )2 
f 

rel )2 
i(v = (v . (15.4.11) 

For a one-dimensional collision, the magnitude of the relative speed remains constant but 
the direction changes by 180 . 

We can now solve for the final x -component of the velocities, v1x , f and v2 x , f , as 
follows. Eq. (15.4.7) may be rewritten as 

v2 x , f = v1x , f + v1x ,i − v2x ,i . (15.4.12) 

Now substitute Eq. (15.4.12) into Eq. (15.4.1) yielding 

m1v1x ,i + m2v2x ,i = m1v1x , f + m2(v1x , f + v1x ,i − v2 x ,i ) . (15.4.13) 

Solving Eq. (15.4.13) for v1x , f involves some algebra and yields 

m1 − m2 2 m2v1x , f = v1x ,i + v2x ,i . (15.4.14) 
m1 + m2 m1 + m2 
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To find v2 x , f , rewrite Eq. (15.4.7) as 

v1x , f = v2x , f − v1x ,i + v2x ,i . (15.4.15) 

Now substitute Eq. (15.4.15) into Eq. (15.4.1) yielding 

m1v1x ,i + m2v2 x ,i = m1(v2x , f − v1x ,i + v2x ,i )v1x , f + m2v2x , f . (15.4.16) 

We can solve Eq. (15.4.16) for v2 x , f and determine that 

m2 − m1 2 m1v2 x , f = v2x ,i + v1x ,i . (15.4.17) 
m2 + m1 m2 + m1 

Consider what happens in the limits m1 >> m2 in Eq. (15.4.14).  Then 

v1x , f → v1x ,i + 
2 

m2v2 x ,i ; (15.4.18) 
m1 

the more massive object’s velocity component is only slightly changed by an amount 
proportional to the less massive object’s x -component of momentum. Similarly, the less 
massive object’s final velocity approaches 

v2 x , f →−v2x ,i + 2v1x ,i = v1x ,i + v1x ,i − v2 x ,i . (15.4.19) 
We can rewrite this as 

− v1x ,i = v1x ,i − v2x ,i = v rel . (15.4.20) v2 x , f x ,i 

i.e. the less massive object “rebounds” with the same speed relative to the more massive 
object which barely changed its speed. 

If the objects are identical, or have the same mass, Eqs. (15.4.14) and (15.4.17) become 

v1x , f = v2x ,i , v2x , f = v1x ,i ; (15.4.21) 

the objects have exchanged x -components of velocities, and unless we could somehow 
distinguish the objects, we might not be able to tell if there was a collision at all.  
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15.4.2 One-Dimensional Collision Between Two Objects – Center-of-Mass Reference 
Frame 

We analyzed the one-dimensional elastic collision (Figure 15.5) in Section 15.4.1 in the 
laboratory reference frame. Now let’s view the collision from the center-of-mass (CM) 
frame.  The x -component of velocity of the center-of-mass is 

m1 v1x ,i + m2 v2x ,ivx ,cm = . (15.4.22) 
m1 + m2 

With respect to the center-of-mass, the x -components of the velocities of the objects are 

m2v1 ′ x ,i = v1x ,i − v = (v1x ,i − v2x ,i )x ,cm m1 + m2 (15.4.23) 
m1v2 ′ x ,i = v2x ,i − v = (v2x ,i − v1x ,i ) . x ,cm m1 + m2 

In the CM frame the momentum of the system is zero before the collision and hence the 
momentum of the system is zero after the collision. For an elastic collision, the only way 
for both momentum and kinetic energy to be the same before and after the collision is 
either the objects have the same velocity (a miss) or to reverse the direction of the 
velocities as shown in Figure 15.6. 

Figure 15.6 One-dimensional elastic collision in center-of-mass reference frame 

In the CM frame, the final x -components of the velocities are 

m2v1 ′ x , f = −v1 ′ x ,i = (v2x ,i − v1x ,i ) m1 + m2 (15.4.24) 
m1v2 ′ x , f = −v2 ′ x ,i = (v2 x ,i − v1x ,i ) . 

m1 + m2 

The final x -components of the velocities in the “laboratory frame” are then given by 
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v1x , f = v1 ′ x , f + v x ,cm 

m2 
m1 v1x ,i + m2 v2x ,i= (v2x ,i − v1x ,i ) + (15.4.25) 

m1 + m2 m1 + m2 

m1 − m2 2 m2= v1x ,i + v2x ,im1 + m2 m1 + m2 

as in Eq. (15.4.14) and a similar calculation reproduces Eq. (15.4.17). 

15.5 Worked Examples 

Example 15.1 Elastic One-Dimensional Collision Between Two Objects 

1 2

î v1,i = v1,x ,i ̂i v2,i = 0 initial state 
m2 = 2m1 

î î final statev1, f = v1,x , f v2, f = v2,x , fî m2 = 2m1 

1 2 

Figure 15.7 Elastic collision between two non-identical carts 

Consider the elastic collision of two carts along a track; the incident cart 1 has mass m1 

and moves with initial speed v1,i . The target cart has mass m2 = 2 m1 and is initially at 

rest, = 0 , (Figure 15.7). Immediately after the collision, the incident cart has final v2,i 

speed v1, f and the target cart has final speed v2, f . Calculate the final x -component of the 

velocities of the carts as a function of the initial speed v1,i . 

Solution The momentum flow diagram for the objects before (initial state) and after 
(final state) the collision are shown in Figure 15.7. We can immediately use our results 
above with m2 = 2 m1 and v2,i = 0 . The final x -component of velocity of cart 1 is given 

by Eq. (15.4.14), where we use v1x ,i = v1,i 
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v1x , f 

1 = − v1,i .3 
(15.5.1) 

The final x -component of velocity of cart 2 is given by Eq. (15.4.17) 

v2 x , f = 
2 
3 

v1,i . (15.5.2) 

Example 15.2 The Dissipation of Kinetic Energy in a Completely Inelastic Collision 
Between Two Objects 

î = 0v1,i v2,i 
initial state 

1 2 

î final state v f 

1 2 

Figure 15.7b Inelastic collision between two non-identical carts 

An incident cart of mass m1 and initial speed v1, i collides completely inelastically with a 
cart of mass m2 that is initially at rest (Figure 15.7b). There are no external forces acting 
on the objects in the direction of the collision. Find ΔK / K initial = (Kfinal − K initial ) / K initial . 

Solution: In the absence of any net force on the system consisting of the two carts, the 
momentum after the collision will be the same as before the collision. After the collision 
the carts will move in the direction of the initial velocity of the incident cart with a 
common speed v f found from applying the momentum condition 

m1v1, i = (m1 + m2 )vf ⇒ 

m1 
(15.5.3) 

=vf v1, i . m1 + m2 

The initial relative speed is vi 
rel = v1, i . The final relative velocity is zero because the carts 

stick together so using Eq. (15.3.4), the change in kinetic energy is 

ΔK = − 
2
1 µ(vi

rel )2 = − 
1 m1m2 v1, 

2 
i . (15.5.4) 

2 m1 + m2 
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The ratio of the change in kinetic energy to the initial kinetic energy is then 

m2= − .ΔK / K initial m1 + m2 

(15.5.5) 

As a check, we can calculate the change in kinetic energy via 

1 1 22 −ΔK = (K f − Ki ) = (m1 + m2 )vf 2 
v1, i2 

2
1 ⎛ m1 ⎞ 12 2= (m1 + m2 ) −v1, i 2 

v1, i2 ⎝⎜ ⎠⎟m1 + m2 

⎛ ⎞m1 ⎛ 1 12 ⎞ m1m2 2= −1 .⎠⎟ = −⎝⎜ 2 
m1v1, i v1, i⎝⎜ ⎠⎟m1 + m2 2 m1 + m2 

(15.5.6) 

in agreement with Eq. (15.5.4). 

Example 15.3 Bouncing Superballs 

1 

2 g 

M2 >> M1 

Figure 15.8b Two superballs dropping 

Consider two balls that are dropped from a height hi above the ground, one on top of the 
other (Figure 15.8). Ball 1 is on top and has mass M1 , and ball 2 is underneath and has 
mass M2 with M2 >> M1 . Assume that there is no loss of kinetic energy during all 
collisions. Ball 2 first collides with the ground and rebounds. Then, as ball 2`starts to 
move upward, it collides with the ball 1 which is still moving downwards (figure below 
left). How high will ball 1 rebound in the air? Hint: consider this collision as seen by an 
observer moving upward with the same speed as the ball 2 has after it collides with 
ground. What speed does ball 1 have in this reference frame after it collides with the ball 
2? 
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Solution 

The system consists of the two balls and the earth. There are five special states for this 
motion shown in the figure below. 

part a) 

Initial State: the balls are released from rest at a height hi above the ground. 

State A: the balls just reach the ground with speed va = 

= 0 ⇒ ΔK = −ΔU . Thus (1 / 2)mv2 − 0 = −mgΔh = mghiΔEmech a 

2ghi . This follows from 

⇒ v a = 2ghi . 

State B: immediately before the collision of the balls. Ball 2 has collided with the ground 
and reversed direction with the same speed, va , but ball 1 is still moving downward with 
speed va . 

State C: immediately after the collision of the balls. Because we are assuming that 
m2 >> m1 , ball 2 does not change its speed as a result of the collision so it is still moving 
upward with speed va . As a result of the collision, ball 1 moves upward with speed vb . 

Final State: ball 1 reaches a maximum height hf = vb 
2 / 2g above the ground. This again 

follows from ΔK = −ΔU ⇒ 0 − (1 / 2)mv2 = −mgΔh = −mgh ⇒ h = v2 / 2g .b f f b 

Choice of Reference Frame: 

As indicated in the hint above, this collision is best analyzed from the reference frame of 
an observer moving upward with speed va , the speed of ball 2 just after it rebounded with 
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the ground. In this frame immediately, before the collision, ball 1 is moving downward 
with a speed vb ′ that is twice the speed seen by an observer at rest on the ground (lab 
reference frame). 

va ′ = 2va (15.5.7) 

The mass of ball 2 is much larger than the mass of ball 1, m2 >> m1 . This enables us to 
consider the collision (between States B and C) to be equivalent to ball 1 bouncing off a 
hard wall, while ball 2 experiences virtually no recoil. Hence ball 2 remains at rest in the 
reference frame moving upwards with speed va with respect to observer at rest on 
ground. Before the collision, ball 1 has speed va ′ = 2va . Since there is no loss of kinetic 
energy during the collision, the result of the collision is that ball 1 changes direction but 
maintains the same speed, 

= 2v . (15.5.8) vb ′ a 

However, according to an observer at rest on the ground, after the collision ball 1 is 
moving upwards with speed 

= 2v + v = 3v . (15.5.9) vb a a a 

While rebounding, the mechanical energy of the smaller superball is constant (we 
consider the smaller superball and the Earth as a system) hence between State C and the 
Final State, 

ΔK + ΔU = 0 . (15.5.10) 

The change in kinetic energy is 
1 

)2ΔK = − m1(3va . (15.5.11) 
2 

The change in potential energy is 
ΔU = m1 g hf . (15.5.12) 

So the condition that mechanical energy is constant (Equation (15.5.10)) is now 

− 
1 m1(3v1a )

2 + m1 g hf = 0 . (15.5.13) 
2 

We can rewrite Equation (15.5.13) as 
1 

)2g hf = 9 ( v . (15.5.14) m1 m1 a2 
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Recall that we can also use the fact that the mechanical energy doesn’t change between 
the Initial State and State A yielding an equation similar to Eq. (15.5.14), 

m1 g hi = 
1 m1( v )2 . (15.5.15) 
2 a 

Now substitute the expression for the kinetic energy in Eq. (15.5.15) into Eq. (15.5.14) 
yielding 

m1 g hf = 9 m1 g hi . (15.5.16) 

Thus ball 1 reaches a maximum height 
hf = 9 hi . (15.5.17) 

15.6 Two Dimensional Elastic Collisions 

15.6.1 Two-dimensional Elastic Collision in Laboratory Reference Frame 

Consider the elastic collision between two particles in which we neglect any external 
forces on the system consisting of the two particles. Particle 1 of mass m1 is initially 

moving with velocity and collides elastically with a particle 2 of mass that isv1, i m2 

initially at rest. We shall refer to the reference frame in which one particle is at rest, ‘the 
target’, as the laboratory reference frame. After the collision particle 1 moves with 

 velocity v1, f and particle 2 moves with velocity v2, f , (Figure 15.9). The angles θ1, f 

and θ2, f that the particles make with the positive forward direction of particle 1 are 

Figure 15.9 Two-dimensional collision in laboratory reference frame 

called the laboratory scattering angles. 

1, f 

2, f 

1 
1 

2 
2 

v1, i 

v1, f 

v2, f 

Generally the initial velocity of particle 1 is known and we would like to determine v1, i 
 the final velocities and v2, f , which requires finding the magnitudes and directions v1, f 
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of each of these vectors, v1, f , v2, f , θ1, f , and θ2, f . These quantities are related by the two 
equations describing the constancy of momentum, and the one equation describing 
constancy of the kinetic energy. Therefore there is one degree of freedom that we must 
specify in order to determine the outcome of the collision. In what follows we shall 
express our results for v1, f , v2, f , and θ2, f in terms of v1, i and θ1, f . 

The components of the total momentum psys 
i = m1 

v1,i + m2 
v2,i in the initial state are given 

by 
psys 

x ,i = m1v1,i (15.6.1) 
sys py ,i = 0. 

The components of the momentum psys 
f = m1 

v1, f + m2 
v f2, in the final state are given by 

sys p v1, f cosθ1, f v2, f cosθ2, fx , f = m1 + m2 (15.6.2) 
psys sinθ1, f sinθ2, f . y , f = m1 v1, f − m2 v2, f 

There are no any external forces acting on the system, so each component of the total 
momentum remains constant during the collision, 

sys sys = (15.6.3) px ,i px , f 

sys sys p = p . (15.6.4) y ,i y , f 

Eqs. (15.6.3) and (15.6.4) become 

m1 = m1 v1, f cosθ1, f + m2 v2, f cosθ2, f , (15.6.5) v1,i 

0 = m1 v1, f sinθ1, f − m2 v2, f sinθ2, f . (15.6.6) 

The collision is elastic and therefore the system kinetic energy of is constant 

sys sys Ki = K f . (15.6.7) 

Using the given information, Eq. (15.6.7) becomes 

1 1 12 2 2m1 = m1 + m2 . (15.6.8) v1,i v1, f v2, f2 2 2 

Rewrite the expressions in Eqs. (15.6.5) and (15.6.6) as 

m2v2, f cosθ2, f = m1 − v1, f cosθ1, f ), (15.6.9) (v1,i 
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sinθ2, f .m2v2, f = m1v1, f sinθ1, f (15.6.10) 

Square each of the expressions in Eqs. (15.6.9) and (15.6.10), add them together and use 
the identity cos2 θ + sin2 θ = 1 yielding 

2 m1
2

2 2= − 2v1,iv1, f cosθ1, f ) . (15.6.11) v2, f 2 (v1,i + v1, fm2 

Substituting Eq. (15.6.11) into Eq. (15.6.8) yields 

21 2 1 2 1 m1 2 2= + − 2v1,i v1, f cosθ1, f ) . (15.6.12) m1v1,i m1v1, f (v1,i + v1, f2 2 2 m2 

Eq. (15.6.12) simplifies to 

⎛ ⎞ ⎛ ⎞m1 2 m1 m1 20 = 1+ 
⎠⎟ 

v1, f − 2v1,i v1, f cosθ1, f − 1− 
⎠⎟ 

v1,i , (15.6.13) 
⎝⎜ m2 m2 ⎝⎜ m2 

Let α = m1 / m2 then Eq. (15.6.13) can be written as 

0 = (1+ α )v1, 
2 

f − 2αv1,i v1, f cosθ1, f − (1−α )v1, 
2 

i , (15.6.14) 

The solution to this quadratic equation is given by 

1/2 
± α 2 2 2αv1,i cosθ1, f ( v1,i cos2 θ1, f + (1−α 2 )v1,i )= . (15.6.15) v1, f (1+ α ) 

Divide Eq. (15.6.10) by Eq. (15.6.9): 

sinθ2, f sinθ1, fv2, f v1, f= . (15.6.16) 
v2, f cosθ2, f − v1, f cosθ1, fv1,i 

Eq. (15.6.16) simplifies to 
sinθ1, fv1, ftanθ2, f = . (15.6.17) 

− v1, f cosθ1, fv1,i 

The relationship between the scattering angles in Eq. (15.6.17) is independent of the 
masses of the colliding particles. Thus the scattering angle for particle 2 is 
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⎛ sinθ1, f 
⎞v1, f= tan−1 

⎜ ⎟ (15.6.18) θ2, f 
⎝ − v1, f cosθ1, f ⎠v1,i 

We can now use Eq. (15.6.10) to find an expression for the final velocity of particle 2 

sinθ1, fαv1, f= . (15.6.19) v2, f sinθ2, f 

Example 15.5 Elastic Two-dimensional collision of identical particles 

1 1 

2 
2 

v1, i 

v1, f 

v2, f 

1, f 

2, f 

î 
ĵ 

Figure 15.10 Momentum flow diagram for two-dimensional elastic collision 

= 30 

Object 1 with mass is initially moving with speed m a1 v1,i = 3.0m ⋅s−1 and collides 

elastically with object 2 that has the same mass, m2 = m1 , and is initially at rest. After the 
collision, object 1 moves with an unknown speed v1, f 

at an angle θ1, f with respect to its 

initial direction of motion and object 2 moves with an unknown speed v2, f , at an 

unknown angle θ2, f (as shown in the Figure 15.10). Find the final speeds of each of the 

objects and the angle θ2, f . 

Solution: Because the masses are equal, α = 1. We are given that v1,i = 3.0 m ⋅s−1 and 

θ1, f = 30o . Hence Eq. (15.6.14) reduces to 

v1, f = v1,i cosθ1, f = (3.0 m ⋅s−1)cos30 = 2.6 m ⋅s−1 . (15.6.20) 

Substituting Eq. (15.6.20) in Eq. (15.6.17) yields 
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⎛ sinθ1, f 
⎞v1, f= tan−1θ2, f ⎜ ⎟

⎝ cosθ1, f ⎠v1,i − v1, f 

(2.6 m ⋅s−1)sin(30 )= tan−1 ⎛ ⎞ 
(15.6.21) θ2, f ⎝⎜ 3.0 m ⋅s−1 − (2.6 m ⋅s−1)cos(30 )⎠⎟ 

= 60 . 

The above results for v1, f and θ2 , f may be substituted into either of the expressions in 

Eq. (15.6.9), or Eq. (15.6.11), to find v2 , f = 1.5m ⋅ s−1 . Eq. (15.6.11) also has the solution 

v2, f = 0 , which would correspond to the incident particle missing the target completely. 

Before going on, the fact that θ1, f +θ2, f = 90 , that is, the objects move away from the 
collision point at right angles, is not a coincidence. A vector derivation is presented in 
Example 15.6. We can see this result algebraically from the above result. Substituting 
Eq. (15.6.20) v1, f = v1,i cosθ1, f in Eq. (15.6.17) yields 

cosθ1, f sinθ1, ftanθ2, f = 2 = cotθ1, f = tan(90 −θ1, f ) ; (15.6.22) 
1− cosθ1, f 

showing that θ1, f +θ2, f = 90 , the angles θ1, f and θ2, f are complements. 

Example 15.6 Two-dimensional elastic collision between particles of equal mass 

Show that the equal mass particles emerge from a two-dimensional elastic collision at 
right angles by making explicit use of the fact that momentum is a vector quantity. 

1 1 

2 
2 

v1, i 

v1, f 

v2, f 

1, f 

2, f 

î 
ĵ 

Figure 15.11 Elastic scattering of identical particles 
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Solution: Choose a reference frame in which particle 2 is initially at rest (Figure 15.11). 
There are no external forces acting on the two objects during the collision (the collision 
forces are all internal), therefore momentum is constant 

 sys sys pi = p f , (15.6.23) 
which becomes 

m1 
v v v (15.6.24) + m1 = m1 .1, i 1, f 2, f 

Eq. (15.6.24) simplifies to 
v = 

v v (15.6.25) + .1,i 1, f 2, f 

Recall the vector identity that the square of the speed is given by the dot product 
  v ⋅ v = v2 . With this identity in mind, we take the dot product of each side of Eq. 
(15.6.25) with itself, 

v ⋅ v = (v v v f1, 
v f1, 

v) ⋅( )+ +1,i 1,i 1, f 2, f 2, f (15.6.26) 
= 
v v v v ⋅ v⋅ + 2 ⋅ + 2, f .1, f 1, f 2, f 2, f 

This becomes 
2 2 2+ 2 ⋅  . (15.6.27) v1,i = v1, f v1, f v2, f + v2, f 

Recall that kinetic energy is the same before and after an elastic collision, and the masses 
of the two objects are equal, so constancy of energy, (Eq. (15.4.2)) simplifies to 

2 2 2 . (15.6.28) v1,i = v1, f + v2, f 

Comparing Eq. (15.6.27) to Eq. (15.6.28), we see that 

  v1, f ⋅ v2, f = 0 . (15.6.29) 

The dot product of two nonzero vectors is zero when the two vectors are at right angles to 
each other justifying our claim that the collision particles emerge at right angles to each 
other. 

Example 15.7 Two dimensional collision between particles of unequal mass 

Particle 1 of mass m1 , initially moving in the positive x -direction (to the right in the 
figure below) with speed v1,i , collides with particle 2 of mass m = m / 3 , which is 2 1 

initially moving in the opposite direction (Figure 15.12) with an unknown speed v2,i . 
Assume that the total external force acting on the particles is zero. Do not assume the 
collision is elastic. After the collision, particle 1 moves with speed v1, f / 2 in the = v1,i 

negative y -direction. After the collision, particle 2 moves with an unknown speed v2, f , 
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at an angle θ2, f = 45o with respect to the positive x -direction. (i) Determine the initial 

speed v2,i of particle 2 and the final speed v2, f of particle 2 in terms of v1,i . (ii) Is the 
collision elastic? 

î 
ĵ 

before after 

m1 = m 

1 2 

1 

2 

= 45 

m2 = m / 3 

v1,i 

v1, f = v1,i / 2 

v2, f 

v2,i 

Figure 15.12 Two-dimensional collision between particles of unequal mass 

Solution: We choose as our system the two particles. We are given that v1, f / 2 . We= v1,i 

apply the two momentum conditions, 

m1 − (m1 / 3)v2,i = (m1 / 3) v2, f ( 2 / 2) (15.6.30) v1,i 

0 = m1 − (m1 / 3) v2, f ( 2 / 2) . (15.6.31) v1, f 

Solve Eq. (15.6.31) for v2, f 

= (15.6.32) v2, f = 3 2v1, f 

3 2 v1,i2 

Substitute Eq. (15.6.32) into Eq. (15.6.30) and solve for v2,i 

= (3 / 2)v1,i . (15.6.33) v2,i 

The initial kinetic energy is then 

1 2 1 2 7 2= + (m1 / 3)v2,i = . (15.6.34) Ki m1v1,i m1v1,i2 2 8 
The final kinetic energy is 

1 1 1 3 72 2 2 2 2K f = m1 + m2 = m1 + m1 = m1 . (15.6.35) v1, f v2, f v1,i v1,i v1,i2 2 8 4 8 

Comparing our results, we see that kinetic energy is constant so the collision is elastic. 
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15.7 Two-Dimensional Collisions in Center-of-Mass Reference Frame 

15.7.1 Two-Dimensional Collision in Center-of-Mass Reference Frame 

Consider the elastic collision between two particles in the laboratory reference frame 
(Figure 15.9). Particle 1 of mass m1 

is initially moving with velocity v i1, and collides 

elastically with a particle 2 of mass m2 that is initially at rest. After the collision the 
particle 1 moves with velocity v  1, f and particle 2 moves with velocity v  2, f . In section 

15.7.1 we determined how to find v1, f , v2, f , and θ2, f in terms of v1, i and θ2, f . We shall 
now analyze the collision in the center-of-mass reference frame, which is boosted form 
the laboratory frame by the velocity of center-of-mass given by 

v i1, m1 
cm m1 + m2 

v = . (15.6.36) 

Because we assumed that there are no external forces acting on the system, the center-of-
mass velocity remains constant during the interaction. 

1 

1 

2 2 
v2, f 

v1, f 

v1,i 
v2,i 

cm 

Figure 15.13 Two-dimensional elastic collision in center-of-mass reference frame 

Recall the velocities of particles 1 and 2 in the center-of-mass frame are given by 
(Eq.,(15.2.9) and (15.2.10)). In the center-of-mass reference frame the velocities of the 
two incoming particles are in opposite directions, as are the velocities of the two outgoing 
particles after the collision (Figure 15.13). The angle Θ cm between the incoming and 
outgoing velocities is called the center-of-mass scattering angle. 
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15.7.2 Scattering in the Center-of-Mass Reference Frame 

Consider a collision between particle 1 of mass and velocity and particle 2 ofm1 v1,i 

mass m2 at rest in the laboratory frame. Particle 1 is scattered elastically through a 
scattering angle Θ in the center-of-mass frame. The center-of-mass velocity is given by 

 
 m1v1,iv cm = . (15.6.37) 

m1 + m2 

In the center-of-mass frame, the momentum of the system of two particles is zero 
    0 = m1 + m2 = m1 + m2 . (15.6.38) v1, ′ i v′ 2,i v1, ′ f v′ 2, f 

Therefore 
 m2  (15.6.39) v1, ′ i = − v′ 2,i . 

m1 

 m2  = − (15.6.40) v1, ′ f v′ 2, fm1 

The energy condition in the center-of-mass frame is 

1 1 2 1 2 1 22 + = + . (15.6.41) m1v1, ′ i m2v2, ′ i m1v1, ′ f m2v2, ′ f2 2 2 2 

Substituting Eqs. (15.6.39) and (15.6.40) into Eq. (15.6.41) yields 

= (15.6.42) v1, ′ i v1, ′ f . 

(we are only considering magnitudes). Therefore 

= . (15.6.43) v2, ′ i v2, ′ f 

Because the magnitude of the velocity of a particle in the center-of-mass reference frame 
is proportional to the relative velocity of the two particles, Eqs. (15.6.42) and (15.6.43) 
imply that the magnitude of the relative velocity also does not change 

, (15.6.44) =v  1, 2, ′ i v  1, 2, ′ f 

verifying our earlier result that for an elastic collision the relative speed remains the 
same, (Eq. (15.2.20)). However the direction of the relative velocity is rotated by the 
center-of-mass scattering angle Θ cm . This generalizes the energy-momentum principle to 
two dimensions. Recall that the relative velocity is independent of the reference frame, 
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 − 
 − 

 = (15.6.45) v1, i v2, i v1, ′ i v′ 2, i 

  
In the laboratory reference frame = 0 , hence the initial relative velocity is v2,i 
   = = , and the velocities in the center-of-mass frame of the particles are then v1, 2, ′ i v1, 2, i v1, i 

 µ  = (15.6.46) v1, ′ i v1, im1 

 = − 
µ  . (15.6.47) v′ 2, i v1, im2 

Therefore the magnitudes of the final velocities in the center-of-mass frame are 

µ µ µ= = = = (15.6.48) v1, ′ f v1, ′ i v1, 2, ′ i v1, 2, i v1, i . m1 m1 m1 

µ µ µ= = = = (15.6.49) v2, ′ f v2, ′ i v1, 2, ′ i v1, 2, i v1, i . m2 m2 m2 

Example 15.8 Scattering in the Lab and CM Frames 

Particle 1 of mass and velocity by a particle of mass m2 at rest in the laboratory m1 v1,i 

frame is scattered elastically through a scattering angle Θ in the center of mass frame, 
(Figure 15.14). Find (i) the scattering angle of the incoming particle in the laboratory 
frame, (ii) the magnitude of the final velocity of the incoming particle in the laboratory 
reference frame, and (iii) the fractional loss of kinetic energy of the incoming particle. 

v1, f 
ĵ v1, f 
î 11 

1, 1 v i 1, f v1,i cm 

2 1 2 v2,i 22, f cm 

2 v2, f 

v2, f 

Figure 15.14 Scattering in the laboratory and center-of-mass reference frames 

15-26 



  

 
 

        
  

 
       

 
          

   
 
 

 
  

 
      

 
 

    

      
 
           

  

 
  

   

 
      

 

 
  

   

 
        

 

Solution: 

i) In order to determine the center-of-mass scattering angle we use the transformation law 
for velocities 

  − 
 = v . (15.6.50) v1, ′ f v1, f cm 

In Figure 15.15 we show the collision in the center-of-mass frame along with the 
laboratory frame final velocities and scattering angles. 

1 

v1, f 

v1,i 

1, f 

v cm 

v1, f 

v2,i 

cm 

2 

v2, f 
2, f 

cm 

î 

ĵ 

v cm 

1 2 

v2, f 
Figure 15.15 Final velocities of colliding particles 

Vector decomposition of Eq. (15.6.50) yields 

v1, f cosθ1, i = v1, ′ f cosΘ − v , (15.6.51) cm cm 

v1, f sinθ1, i = v1, ′ f sinΘ cm . (15.6.52) 

where we choose as our directions the horizontal and vertical Divide Eq. (15.6.52) by 
(15.6.51) yields 

sinθ1, i sinΘv1, f v1, ′ f cm tanθ1, i = = (15.6.53) 
v1, f cosθ1, i v1, ′ f cosΘ − v cm cm 

Because = , we can rewrite Eq. (15.6.53) as v1, ′ i v1, ′ f 

v1, ′ i sinΘ cm tanθ1, i = (15.6.54) 
v1, ′ i cosΘ − v cm cm 

We now substitute Eqs. (15.6.48) and v / (m1 ) into Eq. (15.6.54) yielding cm = m1v1, i + m2 

15-27 



  

 
  

   

 
     

 

 
  

   

 
  

 
 

       
 

 
 

       
 

         
  

 

 
  

   

  

 
  

   

 
            
 

 

 
  

  

 
    

         
  

 
    

      
 

 
 

m2 sinΘ cm tanθ1, i = . (15.6.55) 
cosΘ cm − m1 / m2 

Thus in the laboratory frame particle 1 scatters by an angle 

⎛ ⎞m2 cm θ1, i = tan−1 

⎝⎜ 
sinΘ 

⎠⎟ 
. (15.6.56) 

cosΘ cm − m1 / m2 

ii) We can calculate the square of the final velocity in the laboratory frame 

 v1, f ⋅
 v1, f = ( v1, ′ f +

 v cm ) ⋅(
 v1, ′ f +

v cm ) . (15.6.57) 
which becomes 

2 2 2v1, f = v1, ′ f 
2 + 2v  1, ′ f ⋅ v  cm + vcm = v1, ′ f 

2 + 2v1, ′ f vcm cosΘ cm + vcm . (15.6.58) 

We use the fact that = = (µ / m1 = (µ / m1 = (m2 / m1 + m2 to rewrite v1, ′ f v1, ′ i )v1,2, i )v1, i )v1, i 

Eq. (15.6.58) as 

v1, f 
2 = 

⎝⎜
⎛ m2 

⎠⎟
⎞ 

2 

v1, i 
2 + 2 

m2m1 

)2 v1, i cosΘ cm + 
m1

2 

)2 v1, i 
2 . (15.6.59) 

m1 + m2 (m1 + m2 (m1 + m2 

Thus 
1/2 2(m2

2 + 2m2m1 cosΘ + m1 )= cm . (15.6.60) v1, f v1, im1 + m2 

(iii) The fractional change in the kinetic energy of particle 1 in the laboratory frame is 
given by 

2 2K1, f − K1, i v1, f 
2 − v1, i m2

2 + 2m2m1 cosΘ cm + m1 2m2m1(cosΘ cm −1) 
= = −1 = .(15.6.61) 2 )2 )2K1, i v1, i (m1 + m2 (m1 + m2 

We can also determine the scattering angle Θ cm in the center-of-mass reference frame 
from the scattering angle θ1, i of particle 1 in the laboratory. We now rewrite the 
momentum relations as 

v1, f cosθ1, i + v = v1, ′ f cosΘ , (15.6.62) cm cm 

v1, f sinθ1, i = v1, ′ f sinΘ cm . (15.6.63) 

In a similar fashion to the above argument, we have that 
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sinθ1, fv1, ftanΘ cm = . (15.6.64) 
v1, f cosθ1, f + v cm 

Recall from our analysis of the collision in the laboratory frame that if we specify one of 
the four parameters v1, f , v2, f , θ1, f , or v1, f , then we can solve for the other three in terms 

of the initial parameters and With that caveat, we can use Eq. (15.6.64) to v1, i v2, i . 

determine Θ . cm 
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