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Chapter 22 Three Dimensional Rotations and Gyroscopes 

Hypothesis: The earth, having once received a rotational movement around an 
axis, which agrees with its axis on the figure or only differs from it slightly, will 
always conserve this uniform movement, and its axis of rotation will always 
remain the same and will be directed toward the same points of the sky, unless the 
earth should be subjected to external forces which might cause some change 
either in the speed of rotational movement or in the position of the axis of 
rotation.1 

Leonhard Euler 

22.1 Introduction to Three Dimensional Rotations 

Most of the examples and applications we have considered concerned the rotation of rigid bodies 
about a fixed axis. However, there are many examples of rigid bodies that rotate about an axis 
that is changing its direction. A turning bicycle wheel, a gyroscope, the earth’s precession about 
its axis, a spinning top, and a coin rolling on a table are all examples of this type of motion. 
These motions can be very complex and difficult to analyze. However, for each of these motions 
we know that if there a non-zero torque about a point S , then the angular momentum about S 
must change in time, according to the rotational equation of motion, 

 
 dLSτS = . (22.1.1) 

dt 

 
L 

 
L 

We also know that the angular momentum about S of a rotating body is the sum of the orbital 
angular momentum about S and the spin angular momentum about the center of mass. 

spin 

L = (22.1.2) S 

orbital +S . cm 

For fixed axis rotation the spin angular momentum about the center of mass is just 

 
Lspin = I ω . (22.1.3) cm cm cm 


where ω cm is the angular velocity about the center of mass and is directed along the fixed axis of 
rotation. 

1 L. Euler, Recherches sur la precession des equinoxes et sur la nutation de l'axe de la terre 
(Research concerning the precession of the equinoxes and of the nutation of the earth's axis), Memoires de 
l'academie des sciences de Berlin 5, 1751, pp. 289-325 
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22.1.1 Angular Velocity for Three Dimensional Rotations 

When the axis of rotation is no longer fixed, the angular velocity will no longer point in a fixed 
direction. 

For an object that is rotating with angular coordinates (θ ,θ ,θ ) about each x y z 

respective Cartesian axis, the angular velocity of an object that is rotating about 
each axis is defined to be 

dθ dθ dθ x y zω
 
= î + ĵ+ k̂ 

dt dt dt (22.1.4) 
= ω î + ω ĵ + ω k̂ 

x y z 

This definition is the result of a property of very small (infinitesimal) angular rotations in which 
the order of rotations does matter. For example, consider an object that undergoes a rotation 

 
about the x -axis, ω = ω î , and then a second rotation about the y -axis, ω = ω ĵ . Now x x y y 

consider a different sequence of rotations. The object first undergoes a rotation about the y -axis, 
 
ω = ω ĵ , and then undergoes a second rotation about the x -axis, ω = ω î . In both cases the y y x x 

object will end up in the same position indicated that 

ω + 


ω = 


ω + 


ω x y y x , a necessary condition 

that must be satisfied in order for a physical quantity to be a vector quantity. 

Example 22.1 Angular Velocity of a Rolling Bicycle Wheel 

A bicycle wheel of mass m and radius R rolls without slipping about the z -axis. An axle of 
length b passes through its center. The bicycle wheel undergoes two simultaneous rotations. The  
wheel circles around the z -axis with angular speed Ω and associated angular velocity Ω = Ω z k̂ 

(Figure 22.1). Because the wheel is rotating without slipping, it is spinning about its center of 


mass with angular speed ω spin and associated angular velocity ω spin = −ω spinr̂ . 

b 

M 

R 

S ˆ 

r̂ 

k̂ 

Figure 22.1 Example 22.1 
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The angular velocity of the wheel is the sum of these two vector contributions 


ω = Ω k̂ −ω spinr̂ . (22.1.5) 

Because the wheel is rolling without slipping, v cm = bΩ = ω spin R and so ω spin = bΩ / R . The 
angular velocity is then 


ω = Ω (k̂ − (b / R)r̂) . (22.1.6) 

The orbital angular momentum about the point S where the axle meets the axis of rotation 
(Figure 22.1), is then 

orbitalLS = bmv cm k̂ = mb2Ω k̂ . (22.1.7) 

The spin angular momentum about the center of mass is more complicated. The wheel is rotating 
about both the z -axis and the radial axis. Therefore 

 
Lspin = I Ω k̂ + I (−r̂) . (22.1.8) cm z r ω spin 

Therefore the angular momentum about S is the sum of these two contributions 

 
LS = mb2Ω k̂ + Iz Ω k̂ + Ir ω spin (−r̂) 

(22.1.9) 
= (mb2Ω + Iz Ω) k̂ − Ir (b Ω / R)r̂. 

Comparing Eqs. (22.1.6) and (22.1.9), we note that the angular momentum about S is not 
proportional to the angular velocity. 

22.2 Gyroscope 

A toy gyroscope of mass m consists of a spinning flywheel mounted in a suspension frame that 
allows the flywheel’s axle to point in any direction. One end of the axle is supported on a pylon a 
distance d from the center of mass of the gyroscope. 

s 

22-3 



  

  
 

            
            

 
 

 
  

 
  

 
  

 
       
 

       
 

        
             

      
 

 
    

  

 
              

  
 
       
 

               

           

      
  

      
  

 
             

               

Figure 22.2a Toy Gyroscope 

Choose polar coordinates so that the axle of the gyroscope flywheel is aligned along the r -axis 
and the vertical axis is the z -axis (Figure 22.2 shows a schematic representation of the 
gyroscope). 

.cm 

d 

S 

g 

r̂ k̂ 

ˆ .cm 

d 

S 

g 

r̂ k̂ 

ˆ 

Figure 22.2 A toy gyroscope. Figure 22.3 Angular rotations 

The flywheel is spinning about its axis with a spin angular velocity, 


ω s = ω s r̂ , (22.2.1) 

where ω s is the radial component and ω s > 0 for the case illustrated in Figure 22.2. 

When we release the gyroscope it undergoes a very surprising motion. Instead of falling 
downward, the center of mass rotates about a vertical axis that passes through the contact point 
S of the axle with the pylon with a precessional angular velocity 

 dθ
Ω = Ω k̂ = k̂ , (22.2.2) z dt 

where Ω z = dθ / dt is the z -component and Ω z > 0 for the case illustrated in Figure 22.3. 
Therefore the angular velocity of the flywheel is the sum of these two contributions 


ω = 

ω + s 


Ω ˆ= ω s r + Ω z k̂ . (22.2.3) 

ΩWe shall study the special case where the magnitude of the precession component of the z 

ωangular velocity is much less than the magnitude of the spin component of the spin angular s 

Ω << ω ω
 
 ωvelocity, , so that the magnitude of the angular velocity and Ω and ω are z s s z s 

nearly constant. These assumptions are collectively called the gyroscopic approximation. 

The force diagram for the gyroscope is shown in Figure 22.4. The gravitational force acts at the   
center of the mass and is directed downward, Fg = −mg k̂ . There is also a contact force, Fc , 

22-4 



  

              

              

               
 

 
 

  
 

               
 

      
 

                  
             

    
 
 

      
 

            
   

 

 
   

  

 
    

 
       
 

   
 
 

      
 

 
between the end of the axle and the pylon. It may seem that the contact force, Fc , has only an  
upward component, Fv = Fz k̂ , but as we shall soon see there must also be a radial inward 

 
component to the contact force, Fr = Fr r̂ , with Fr < 0 , because the center of mass undergoes 
circular motion. 

.cm 

d 

S r̂ k̂ 

ˆ 

Fpivot 

mg 

rS ,cm 

S 

F z 

F r 

Figure 22.4 Force and torque diagram for the gyroscope 

The reason that the gyroscope does not fall down is that the vertical component of the contact 
force exactly balances the gravitational force 

Fz − mg = 0 . (22.2.4) 

What about the torque about the contact point S ? The contact force acts at S so it does not 

 

contribute to the torque about S ; only the gravitational force contributes to the torque about S 
(Figure 22.5b). The direction of the torque about S is given by 

τ gravity 

  
= d r̂ × mg(−k̂) = d mgθ̂ ,F (22.2.5) ×= rS S , cm 

 
L 

 
L 

and is in the positive θ̂ -direction. However we know that if there a non-zero torque about S , 
then the angular momentum about S must change in time, according to 

 
 dLSτS = . (22.2.6) 

dt 

The angular momentum about the point S of the gyroscope is given by 

spin 

L (22.2.7) = .S 

orbital +S cm 

The orbital angular momentum about the point S is 


orbitalL   ˆ ˆθ = md 2Ω k .= d r̂ × mdΩ (22.2.8) × mv= rS ,cm S cm z z 
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The magnitude of the orbital angular momentum about S is nearly constant and the direction 
does not change. Therefore 

d  
orbitalLS = 0 . (22.2.9) 

dt 

The spin angular momentum includes two terms. Recall that the flywheel undergoes two separate 
rotations about different axes. It is spinning about the flywheel axis with spin angular velocity 

ω s . As the flywheel precesses around the pivot point, the flywheel rotates about the z -axis with 

 
precessional angular velocity Ω (Figure 22.5). The spin angular momentum therefore is given 
by 

spinL = I ω r̂ + I Ω k̂ , (22.2.10) cm r s z z 

where Ir is the moment of inertia with respect to the flywheel axis and Iz is the moment of 
inertia with respect to the z -axis. If we assume the axle is massless and the flywheel is uniform 
with radius R , then I = (1 / 2)mR2 . By the perpendicular axis theorem I = I + I = 2I , hence r r z y z 

Iz = (1/ 4)mR2 . 

Figure 22.5: Rotations about center of mass Figure 22.6 Spin angular momentum. 
of flywheel 

Ω << ωRecall that the gyroscopic approximation holds when , which implies that z s 

I Ω << I ω , and therefore we can ignore the contribution to the spin angular momentum from z z r s 

the rotation about the vertical axis, and so 


spin  IL ω r̂ . (22.2.11) cm cm s 

(The contribution to the spin angular momentum due to the rotation about the z -axis, Iz Ω z k̂ , is 
nearly constant in both magnitude and direction so it does not change in time,  
d(Iz Ω z k̂) / dt  0 .) Therefore the angular momentum about S is approximately 

 
spin L  L = I ω r̂ . (22.2.12) S cm cm s 
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Our initial expectation that the gyroscope should fall downward due to the torque that the 
gravitational force exerts about the contact point S leads to a violation of the torque law. If the 


spin center of mass did start to fall then the change in the spin angular momentum, ΔL cm , would 

point in the negative z -direction and that would contradict the vector aspect of Eq. (22.2.6).  
Instead of falling down, the angular momentum about the center of mass, Lspin , must change cm  
direction such that the direction of ΔLspin is in the same direction as torque about S (Eq. cm 

(22.2.5)), the positive θ̂ -direction. 

Recall that in our study of circular motion, we have already encountered several examples in 
which the direction of a constant magnitude vector changes. We considered a point object of 
mass m moving in a circle of radius r . When we choose a coordinate system with an origin at the center of the circle, the position vector r is directed radially outward. As the mass moves in 
a circle, the position vector has a constant magnitude but changes in direction. The velocity 
vector is given by 

d r d dθ v = = (r r̂) = r θ̂ = rω z θ̂ (22.2.13) 
dt dt dt 

and has direction that is perpendicular to the position vector (tangent to the circle), (Figure 
22.7a)). 

Figure 22.7 (a) Rotating position and velocity vector;  (b) velocity and acceleration vector for 
uniform circular motion 

For uniform circular motion, the magnitude of the velocity is constant but the direction 
constantly changes and we found that the acceleration is given by (Figure 22.7b) 

d v d dθ a = = (vθ 
θ̂) = vθ 

(−r̂) = rω ω (−r̂) = −rω 2r̂ . (22.2.14) z z zdt dt dt 

Note that we used the facts that 
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dr̂ dθ ˆ= θ,
dt dt , (22.2.15) 

dθ̂ dθ 
= − r̂ 

dt dt 

in Eqs. (22.2.13) and (22.2.14). We can apply the same reasoning to how the spin angular 
changes in time (Figure 22.8). 

The time derivative of the spin angular momentum is given by 

 
spinLd  dLS dθ θ̂ = ˆ ˆθ = I ω Ω θ . cm,ω spin spin L L cm, ω cm, ωsdt dt dt 

Ω (22.2.16) s == z r s zs 

where Ω z = dθ / dt is the z -component and Ω z > 0 . The center of mass of the flywheel rotates 
about a vertical axis that passes through the contact point S of the axle with the pylon with a 
precessional angular velocity 

 dθ
Ω = Ω z k̂ = k̂ , (22.2.17) 

dt 
Substitute Eqs. (22.2.16) and (22.2.5) into Eq. (22.2.6) yielding 


spin ˆd mgθ̂ = L Ω z θ . (22.2.18) cm 

Solving Equation (22.2.18) for the z -component of the precessional angular velocity of the 
gyroscope yields 

d mg d mg 
Ω z = 

spin 
= . (22.2.19) 

I ωL cm scm 

dLdL cm cm 

. 

. 

.. 

. 

. 

L cm 

L cm 

L cm 

L cm 

L cm L cm 

dt dt 

dL dL 

dL cm 

dt 
dL cm 

dt 

cm cm 

dt dt 
view from above 
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Figure 22.8 Time changing direction of the spin angular momentum 

22.3 Why Does a Gyroscope Precess? 

Why does a gyroscope precess? We now understand that the torque is causing the spin angular 
momentum to change but the motion still seems mysterious. We shall try to understand why the 
angular momentum changes direction by first examining the role of force and impulse on a 
single rotating particle and then generalize to a rotating disk. 

22.3.1 Deflection of a Particle by a Small Impulse 

p 

I = F t 

p1 

p2 

+ x 

+ y 
+ z 
S 

rS 

+ z 

+ z 

. p 

I = F t 

p1 

p2 

+ x 

+ y 

+ z 

L1 

L 

L2 

S 
rS 

p p 

(a) (b) 

Figure 22.9 (a) Deflection of a particle by a small impulse, (b) change in angular momentum 
about origin 

We begin by first considering how a particle with momentum p1 undergoes a deflection due to a 
 I << small impulse (Figure 22.9a). If the impulse , the primary effect is to rotate the p1 

1 + Δ 
 pabout the x -axis by a small angle θ , with The application ofmomentum p1 = .2 

!r 
! 
Lp !r 

!! 
L 

 
causes a change in the angular momentum LO ,1 about the origin S , according to the torque 

equation, Δ S = Δ Δt , we have that Δ S 

!
F 


I 


F 

!
IτS ave, S Δt = ( )Δt . Because . As× ×= = = Save ave 

! 
L 

! 
a result, ΔLS rotates about the x -axis by a small angle θ , to a new angular momentum 

+ Δ 
!
L = 

!
L 

! ! 
Note that although LS is in the z -direction, ΔLS is in the negative y -S ,2 S ,1 S . 

direction (Figure 22.9b). 

I 
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22.3.2 Effect of Small Impulse on Tethered Object 

. 
L1 

+ z 

+ x 

+ y 
S 

rS 
F t 

L 

p1 
p1 

. 
L1 

+ z 

+ x 

+ yrS 
SF t 

L2 

(b)(a) 

Figure 22.10a Small impulse on object undergoing circular motion, (b) change in angular 
momentum 

Now consider an object that is attached to a string and is rotating about a fixed point S with 
  !momentum p1 . The object is given an impulse I perpendicular to rS and to p  1 . Neglect gravity. 
! 

As a result ΔLS rotates about the x -axis by a small angle θ (Figure 22.10a). Note that although 
 ! 
I is in the z -direction, ΔLS is in the negative y - direction (Figure 22.10b). Note that although 
 
I is in the z -direction, the plane in which the ball moves also rotates about the x -axis by the 
same angle (Figure 22.11). 

L2 

L 

L1 

F t 

p1 
p 

p2 

+ x 

+ z 

+ y 

Figure 22.11 Plane of object rotates about x -axis 
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Example 22.2 Effect of Large Impulse on Tethered Object 

. 
L1 

+z 

+ x 

+ y 

p1 

SL2 

p21 
2 

3 

4 
5 

6 

7 

8 

Figure 22.12 Example 22.2 
 

What impulse, I , must be given to the ball in order to rotate its orbit by 90 degrees as shown 
without changing its speed (Figure 21.12)? 


ISolution: h. The impulse halt the must momentum   p1 and provide a momentum p2 of equal 

 
magnitude along the z -direction such that I = Δp  . 

+z 

+ x 

+ y 
S 

L2 
I = F t 

L1 

rS 

L 

+z 

+ y 

S t = rS I 

. 

!r !r 
! 

Figure 22.13 Impulse and torque about S 

The angular impulse about S must be equal to the change in angular momentum about S 

τS S SΔt = × 
!
I = ( × Δ 

!p) = Δ 
!
LS (22.3.1) 

22-11 



  

 
               

         
 

 
 

 
  

  
 

              
            
             

      
 

 
 

 
 

 
 

  
 

              
               

 

! 
The change in angular momentum, ΔLS , due to the torque about S , cancels the z -component of 
! 
LS and adds a component of the same magnitude in the negative y -direction (Figure 22.13). 

22.3.3 Effect of Small Impulse Couple on Baton 

+ zL 

L1L2 

+ y 

p
p1 

. 
L1 

+z 

+ x 

+ y
S 

. 
I 

I

p1 

p1 + x 

(a) (b) 
Figure 22.14 (a) and (b) 

Now consider two equal masses at the ends of a massless rod, which spins about its center. We 
apply an impulse couple to insure no motion of the center of mass. Again note that the impulse 
couple is applied in the z -direction (Figure 22.14a). The resulting torque about S lies along the 
negative y -direction and the plane of rotation tilts about the x -axis (Figure 22.14b). 

22.3.4 Effect of Small Impulse Couple on Massless Shaft of Baton 

+z +z 

+ x 

+ y 

p1 

S 

p1 

. 
Ib . 

Ib 
. 

. 

+ x

+ y
S 

.p1 

.aI Ia 

p1 (b) 

(a) 
Figure 22.15 Apply impulse couple to (a) objects and (b) shaft 

! 
Instead of applying the impulse couple I a to the masses (Figure 21.15a), one could apply the 

! ! 
same impulse couple = I to the vertical massless shaft that is connected to the baton (Figure Ib a 

22.15b) to achieve the same result. 

p2 

. 
. I 
I 

p2 
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+ x 

+ z 

+ y 

A 

S 

. 

Ib 

Ib 

. L1 
L2 

L 

. 
. 

p1 

p1 

Figure 22.16 Twisting shaft causes shaft and plane to rotate about x -axis 

Twisting the shaft around the y -axis causes the shaft and the plane in which the baton moves to 
rotate about the x -axis. 

22.3.5 Effect of a Small Impulse Couple on a Rotating Disk 

+z 
L 

L2 L1. 
Ib 

+ y 

Figure 22.17 Impulse couple causes a disk to rotate about the x -axis. 

Now let’s consider a rotating disk. The plane of a rotating disk and its shaft behave just like the 
plane of the rotating baton and its shaft when one attempts to twist the shaft about the y -axis. 
The plane of the disk rotates about the x -axis (Figure 22.17). This unexpected result is due to ! 
the large pre-existing angular momentum about S , L1 , due to the spinning disk. It does not 
matter where along the shaft the impulse couple is applied, as long as it creates the same torque 
about S . 

22.3.6 Effect of a Force Couple on a Rotating Disk 

. 
+ x 

Ib 
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+zL 

. 

+ y 

Ib 

Ib 

+ z 

. 

.. 
I b 

Ib 

+ x 

L s (t + 

+ y 

L s (t) 

s 

t) 

Figure 22.18 A series of small impulse couples causes the tip of the shaft to execute 
circular motion about the x -axis 

A series of small impulse couples, or equivalently a continuous force couple (with force  
F ), causes the tip of the shaft to execute circular motion about the x -axis (Figure 22.18). 
The magnitude of the angular momentum about S changes according to ! ! 
dLS = Ω dt = Iω Ω dt . Recall that torque and changing angular momentum about SLS 

! ! !! 
=are related by τS = dLS / dt . Therefore Ω = Iω Ω . The precession rate of the 

shaft is the ratio of the 
τS LS 

τS τS 

!!
magnitude of the torque to the angular momentum ! 

Ω = / LS / Iω .= 

Figure 22.19 Precessing gyroscope with hanging object 

Thus we can explain the motion of a precessing gyroscope in which the torque about the 
center of mass is provided by the force of gravity on the hanging object (Figure 22.19). 
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22.3.7 Effect of a Small Impulse Couple on a Non-Rotating Disc 

Figure 22.20 Impulse couple on non-rotating disk causes shaft to rotate about negative 
y -axis. 

! ! 
If the disk is not rotating to begin with, ΔLS is also the final LS . The shaft moves in the 
direction it is pushed (Figure 22.20). 

22.4 Worked Examples 

Example 22.3 Tilted Toy Gyroscope 

A wheel is at one end of an axle of length d . The axle is pivoted at an angle φ with 
respect to the vertical. The wheel is set into motion so that it executes uniform 
precession; that is, the wheel’s center of mass moves with uniform circular motion with 
z -component of precessional angular velocity Ω z . The wheel has mass m and moment 


of inertia I about its center of mass. Its spin angular velocity ω has magnitude ω cm s s 

and is directed as shown in Figure 22.21. Assume that the gyroscope approximation holds, 
Ω << ω s . Neglect the mass of the axle. What is the z -component of the precessional z 

angular velocity Ω z ? Does the gyroscope rotate clockwise or counterclockwise about the 
vertical axis (as seen from above)? 

.d 

S g 

r̂ k̂ 

ˆ 

L cm 
spin 

s 
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Figure 22.21 Example 22.3 

Solution: The gravitational force acts at the center of mass and is directed downward,  
Fg = −mg k̂ . Let S denote the contact point between the pylon and the axle. The contact 
force between the pylon and the axle is acting at S so it does not contribute to the torque 
about S . Only the gravitational force contributes to the torque. Let’s choose cylindrical 
coordinates. The torque about S is 

τS 

   
= (d sinφ r̂ + d cosφ k̂) × mg(−k̂) = mgd sinφ θ̂ ,Fg (22.4.1) ×= rS ,cm 

Ωwhich is into the page in Figure 22.21. Because we are assuming that << ω s , we only z 

consider contribution from the spinning about the flywheel axle to the spin angular 
momentum, 


ω = −ω sinφ r̂ −ω cosφ k̂ (22.4.2) s s s 

The spin angular momentum has a vertical and radial component, 

!
spinL = − I ω sinφ r̂ − I ω cosφ k̂ . (22.4.3) cm cm s cm s 

We assume that the spin angular velocity ω s is constant. As the wheel precesses, the 
time derivative of the spin angular momentum arises from the change in the direction of 
the radial component of the spin angular momentum, 

d spin dr̂ dθ ˆL = − I ω sinφ = − I ω sinφ θ . (22.4.4) cm cm s cm sdt dt dt 

where we used the fact that 
dr̂ dθ ˆ= θ . (22.4.5) 
dt dt 

The z -component of the angular velocity of the flywheel about the vertical axis is 
defined to be 

dθΩ z ≡ . (22.4.6) 
dt 

Therefore the rate of change of the spin angular momentum is then 

d spin ˆL = − I ω sinφ Ω θ . (22.4.7) cm cm s zdt 

The torque about S induces the spin angular momentum about S to change, 
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
spin  dL

τS = cm . (22.4.8) 
dt 

Now substitute Equation (22.4.1) for the torque about S , and Equation (22.4.7) for the 
rate of change of the spin angular momentum into Equation (22.4.8), yielding 

mgd sinφ θ̂ = − I ω sinφ Ω θ̂ . (22.4.9) cm s z 

Solving Equation (22.2.18) for the z -component of the precessional angular velocity of 
the gyroscope yields 

d mg Ω = − . (22.4.10) z I ω cm s 

The z -component of the precessional angular velocity is independent of the angle φ . 
! 

Because Ω z < 0 , the direction of the precessional angular velocity, Ω = Ω z k̂ , is in the 
negative z -direction. That means that the gyroscope precesses in the clockwise direction 
when seen from above (Figure 21.22). 

. 

. 

. 

L cm 

L cm 

L cm 

dL cm 

dt 

dL cm 

dt 

dL cm 

view from 
above 

dt 

Figure 21.22 Precessional angular velocity of tilted gyroscope as seen from above 

Both the torque and the time derivative of the spin angular momentum point in the θ̂ -
direction indicating that the gyroscope will precess clockwise when seen from above in 
agreement with the calculation that Ω z < 0 . 

Example 22.4 Gyroscope on Rotating Platform 

A gyroscope consists of an axle of negligible mass and a disk of mass M and radius R 
mounted on a platform that rotates with angular speed Ω . The gyroscope is spinning 
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with angular speed ω . Forces Fa and Fb act on the gyroscopic mounts. What are the 
magnitudes of the forces Fa and Fb (Figure 22.22)? You may assume that the moment of 
inertia of the gyroscope about an axis passing through the center of mass normal to the 
plane of the disk is given by I cm . 

d d 

A B 

FA 
FB 

Figure 22.22 Example 22.4 

Solution: Figure 22.23 shows a choice of coordinate system and force diagram on the 
gyroscope. 

Figure 22.23 Free-body force diagram 

The vertical forces sum to zero since there is no vertical motion 

Fa + Fb − Mg = 0 (22.4.11) 
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Using the coordinate system depicted in the Figure 22.23, torque about the center of mass 
is 


τ cm = d(Fa − Fb )θ̂ (22.4.12) 

The spin angular momentum is (gyroscopic approximation) 


spin  IL ω r̂ (22.4.13) cm cm 

Looking down on the gyroscope from above (Figure 2.23), the radial component of the 
angular momentum about the center of mass is rotating counterclockwise. 

z 

Figure 22.24 Change in angular momentum 

During a very short time interval Δt , the change in the spin angular momentum is 
spin ΔL = I ωΔθ θ̂ , (Figure 22.24). Taking limits we have that cm cm 

 
spin spin dL ΔL Δθ dθcm cm ˆ ˆ= lim = lim I ω θ = I ω θ (22.4.14) cm cm dt Δt→0 Δt Δt→0 Δt dt 

We can now apply the torque law 
spin  dL

τ = cm . (22.4.15) cm dt 

Substitute Eqs. (22.4.12) and (22.4.14) into Eq. (22.4.15) and just taking the component 
of the resulting vector equation yields 

d(F − Fb ) = I ω Ω . (22.4.16) a cm z 

We can divide Eq. (22.4.16) by the quantity d yielding 

cm I ω Ω 
Fa − Fb (22.4.17) = .

d 

We can now use Eqs. (22.4.17) and (22.4.11) to solve for the forces Fa and Fb , 
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1 ⎛ I cm ω Ω z ⎞Fa = Mg + (22.4.18) 
2 ⎝⎜ d ⎠⎟ 

1 ⎛ I cm ω Ω z ⎞Fb = Mg − 
⎠⎟ 

. (22.4.19) 
2 ⎝⎜ d 

Note that if Ω z = Mgd / I cm ω then Fb = 0 and one could remove the right hand support 
in the Figure 22.22. The simple pivoted gyroscope that we already analyzed Section 22.2 
satisfied this condition. The forces we just found are the forces that the mounts must exert 
on the gyroscope in order to cause it to move in the desired direction. It is important to 
understand that the gyroscope is exerting equal and opposite forces on the mounts, i.e. the 
structure that is holding it. This is a manifestation of Newton’s Third Law. 

Example 22.5 Grain Mill 

In a mill, grain is ground by a massive wheel that rolls without slipping in a circle on a 
flat horizontal millstone driven by a vertical shaft. The rolling wheel has mass M , radius 
b and is constrained to roll in a horizontal circle of radius R at angular speed Ω (Figure 
22.25). The wheel pushes down on the lower millstone with a force equal to twice its 
weight (normal force). The mass of the axle of the wheel can be neglected. What is the 
precessional angular frequency Ω ? 

g 

R 

b 

P. r̂ 
ˆ 

k̂

M 

Figure 22.25 Example 22.5 

Solution: Figure 22.5 shows the pivot point along with some convenient coordinate axes.  
For rolling without slipping, the speed of the center of mass of the wheel is related to the 
angular spin speed by 

vcm = bω . (22.4.20) 
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Also the speed of the center of mass is related to the angular speed about the vertical axis 
associated with the circular motion of the center of mass by 

vcm = RΩ . (22.4.21) 

Therefore equating Eqs. (22.4.20) and  (22.4.21) we have that 

ω = ΩR / b . (22.4.22) 

Assuming a uniform millwheel, I cm = (1/ 2) Mb2 , the magnitude of the horizontal 
component of the spin angular momentum about the center of mass is 

Lspin = I ω = 
1 Mb2ω = 

1 Ω MRb . (22.4.23) cm cm 2 2 

 
The horizontal component of Lspin is directed inward, and in vector form is given by cm 


spin Ω MRb L cm = − r̂ . (22.4.24) 

2 

The axle exerts both a force and torque on the wheel, and this force and torque would be 
quite complicated. That’s why we consider the forces and torques on the axle/wheel 
combination. The normal force of the wheel on the ground is equal in magnitude to 
NW,G = 2mg so the third-law counterpart; the normal force of the ground on the wheel 

has the same magnitude NG,W = 2mg . The joint (or hinge) at point P therefore must 
  

exert a force FH,A on the end of the axle that has two components, an inward force F2 to 
 

maintain the circular motion and a downward force F1 to reflect that the upward normal 
force is larger in magnitude than the weight (Figure 22.26).  

P 
. r̂ 

ˆ 

k̂

F1 

F2 

N 

Mg 

Figure 22.26 Free-body force diagram on wheel 
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 
About point P , FH,A exerts no torque. The normal force exerts a torque of magnitude 

NG,W R = 2mgR , directed out of the page, or, in vector form, τ P,N = −2mgRθ̂ . The 
weight exerts a toque of magnitude mgR , directed into the page, or, in vector form, 

τ P,mg = mgR θ̂ . The torque about P is then 

τ P τ P,mg 

 
= τ P,N + 
 

= −2mgRθ̂ + mgR θ̂ = −mgR θ̂ . (22.4.25) 

As the wheel rolls, the horizontal component of the angular momentum about the center 
ˆof mass will rotate, and the inward-directed vector will change in the negative θ -

direction.  The angular momentum about the point P has orbital and spin decomposition 

 
Lspin 

 
L 


L (22.4.26) = .P 

orbital +P cm 

The orbital angular momentum about the point P is 

   = R r̂ × mbΩ θ̂ = mRbΩ k̂ . orbitalLP (22.4.27) × mv= rP,cm cm z 

The magnitude of the orbital angular momentum about P is nearly constant and the 
direction does not change. Therefore 

orbital dLP 
 

= 0 . (22.4.28) 
dt 

Therefore the change in angular momentum about the point P is 

  
dLP dLspin d ⎛ Ω mRb ⎞ 1 = = (−r̂) Ω mRbΩ(− θ̂) , (22.4.29) 
dt dt 

cm 

dt ⎝⎜ 2 ⎠⎟ 
= 

2 

where we used Eq. (22.4.24) for the magnitude of the horizontal component of the 
angular momentum about the center of mass. This is consistent with the torque about P 
pointing out of the plane of Figure 22.26. We can now apply the rotational equation of 
motion,  

 dLPτP = . (22.4.30) 
dt 

Substitute Eqs.(22.4.25) and (22.4.29) into Eq. (22.4.30) yielding 

mgR(− θ̂) = 
1 Ω2mRb(− θ̂). (22.4.31) 
2 
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We can now solve Eq. (22.4.31) for the angular speed about the vertical axis 

2gΩ = . (22.4.32) 
b 
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