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Chapter 29: Kinetic Theory of Gases: 
Equipartition of Energy and the Ideal Gas Law 

29.1 Introduction: Gas 

A gas consists of a very large number of particles (typically 1024 or many orders of 
magnitude more) occupying a volume of space that is very large compared to the size 
(10−10 m ) of any typical atom or molecule. The state of the gas can be described by a few 
macroscopically measurable quantities that completely determine the system. The volume 
of the gas in a container can be measured by the size the container. The pressure of a gas 
can be measured using a pressure gauge. The temperature can be measured with a 
thermometer. The mass, or number of moles or number of molecules, is a measure of the 
quantity of matter. 

29.1.1 Macroscopic vs. Atomistic Description of a Gas 

How can we use the laws of mechanics that describe the motions and interactions of 
individual atomic particles to predict macroscopic properties of the system such as 
pressure, volume, and temperature? In principle, each point-like atomic particle can be 
specified by its position and velocity (neglecting any internal structure). We cannot know 
exactly where and with what velocities all the particles are moving so we must take 
averages. In addition, we need quantum mechanical laws to describe how particles 
interact. In fact, the inability of classical mechanics to predict how the heat capacity of a 
gas varies with temperature was the first experimental suggestion that a new set of 
principles (quantum mechanics) operates at the scale of the size of atoms. However, as a 
starting point we shall use classical mechanics to deduce the ideal gas law, with only a 
minimum of additional assumptions about the internal energy of a gas. 

29.1.2 Atoms, Moles, and Avogadro’s Number 

The Avogadro number was originally defined as the number of molecules in one gram 
of hydrogen. The number was then redefined to be the number of atoms in 12 grams of 
the carbon isotope carbon-12. Now the Avogadro number is the fixed numerical value of 
the Avogadro constant N A when expressed in the unit mol−1 

N A = 6.022140 76 ×1023 mol−1 . (29.1.1) 

Recall that the mole is a base unit in the SI system of units for an amount of 
substance with symbol [mol] . Based on the new definition of Avogadro constant 

N A , one mole contains 6.022140 76 ×1023 elementary entities: 

N A1 mol = (29.2) 
6.02214076 ×1023 
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29.2 Temperature and Thermal Equilibrium 

On a cold winter day, suppose you want to warm up by drinking a cup of tea. You start 
by filling up a kettle with water from the cold water tap (water heaters tend to add 
unpleasant contaminants and reduce the oxygen level in the water). You place the kettle 
on the heating element of the stove and allow the water to boil briefly. You let the water 
cool down slightly to avoid burning the tea leaves or creating bitter flavors and then pour 
the water into a pre-heated teapot containing a few teaspoons of tea; the tea leaves steep 
for a few minutes and then you enjoy your drink. 

When the kettle is in contact with the heating element of the stove, energy flows 
from the heating element to the kettle and then to the water. The conduction of energy is 
due to the contact between the objects. The random motions of the atoms in the heating 
element are transferred to the kettle and water via collisions. We shall refer to this 
conduction process as ‘energy transferred thermally’. Energy transformed thermally has 
traditional been called heat. We can attribute different degrees of “hotness” (based on our 
experience of inadvertently touching the kettle and the water). Temperature is a measure 
of the “hotness” of a body. When two isolated objects that are initially at different 
temperatures are put in contact, the “colder” object heats up while the “hotter” object 
cools down, until they reach the same temperature, a state we refer to as thermal 
equilibrium. Temperature is that property of a system that determines whether or not a 
system is in thermal equilibrium with other systems. 

Consider two systems A and B that are separated from each other by an adiabatic 
boundary (adiabatic = no heat passes through) that does not allow any thermal contact. 
Both A and B are placed in thermal contact with a third system C until thermal 
equilibrium is reached. If the adiabatic boundary is then removed between A and B, no 
energy will transfer thermally between A and B. Thus 

Two systems in thermal equilibrium with a third system are in thermal 
equilibrium with each other. 

29.2.1 Thermometers and Ideal-Gas Temperature 

Any device that measures a thermometric property of an object, for instance the 
expansion of mercury, is called a thermometer. Many different types of thermometers can 
be constructed, making use of different thermometric properties; for example: pressure of 
a gas, electric resistance of a resistor, thermal electromotive force of a thermocouple, 
magnetic susceptibility of a paramagnetic salt, or radiant emittance of blackbody 
radiation. 

29.2.2 Gas Thermometer 
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The gas thermometer measures temperature based on the pressure of a gas at constant 
volume and is used as the standard thermometer, because the variations between different 
gases can be greatly reduced when low pressures are used. A schematic device of a gas 
thermometer is shown in Figure 29.1. The volume of the gas is kept constant by raising or 
lowering the mercury reservoir so that the mercury level on the left arm in Figure 29.1 
just reaches the point I . When the bulb is placed in thermal equilibrium with a system 
whose temperature is to be measured, the difference in height between the mercury levels 
in the left and right arms is measured. The bulb pressure is atmospheric pressure plus the 
pressure in mercury a distance h below the surface (Pascal’s Law). A thermometer needs 
to have two scale points, for example the height of the column of mercury (the height is a 
function of the pressure of the gas) when the bulb is placed in thermal equilibrium with 
ice water and in thermal equilibrium with standard steam. 

Figure 29.1 Constant volume gas thermometer 

At constant volume, and at ordinary temperatures, the pressure of gases is proportional to 
the temperature, 

T ∝ P . (29.1.3) 

We define a linear scale for temperature based on the pressure in the bulb by 

T = a P (29.1.4) 

where a is a positive constant. In order to fix the constant a in Eq. (29.1.4), a standard 
state must be chosen as a reference point. The standard fixed state for thermometry is the 
triple point of water, the state in which ice, water, and water vapor coexist. This state 
occurs at only one definite value of temperature and pressure. By convention, the 
temperature of the triple point of water is chosen to be exactly 273.16 K on the Kelvin 
scale, at a water-vapor pressure of 610 Pa . Let PTP be the value of the pressure P at the 
triple point in the gas thermometer. Set the constant a according to 

273.16 K a = . (29.1.5) 
PTP 
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Hence the temperature at any value of P is then 

273.16 KT P  P  . (29.1.6) 
PTP 

( )  = a = P 

The ratio of temperatures between any two states of a system is then measured by the 
ratio of the pressures of those states, 

T P1 = 1 . (29.1.7) 
T2 P2 

29.2.3 Ideal-Gas Temperature 

Different gases will have different values for the pressure P , hence different 
temperatures ( )T P . When the pressure in the bulb at the triple point is gradually reduced 
to near zero, all gases approach the same pressure reading and hence the same 
temperature. The limit of the temperature T (P) as PTP → 0 is called the ideal-gas 
temperature and is given by the equation 

273.16 K( ) = lim (29.1.8) T P  P . 
P →0TP PTP 

This definition of temperature is independent of the type of gas used in the gas 
thermometer. The lowest possible temperatures measured in gas thermometers use 3He , 
because this gas becomes a liquid at a lower temperature than any other gas. In this way, 
temperatures down to 0.5 K can be measured. We cannot define the temperature of 
absolute zero, 0 K , using this approach. 

29.2.4 Temperature Scales 

The commonly used Celsius scale employs the same size for each degree as the Kelvin 
scale, but the zero point is shifted by 273.15 degrees so that the triple point of water has 

a Celsius temperature of 0.01C , 

T (C) = θ(K) − 273.15C , (29.1.9) 

and the freezing point of water at standard atmospheric pressure is 0C . The Fahrenheit 
scale is related to the Celsius scale by 

T (F) = 
9 T (C) + 32F . (29.1.10) 
5 
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The freezing point of pure water at standard atmospheric pressure occurs at 0C and 

32F . The boiling point of pure water at standard atmospheric pressure is 100C and 

212F . 

29.3 Internal Energy vs. Thermal Energy of a Gas 

The internal energy U of a physical system is defined to be the sum of all contributions 
to the total energy of the system in a reference frame in which the center of mass of the 
system is at rest. The internal energy dos not include potential energies that are due to 
external interactions, for example the gravitational potential energy due to the interaction 
between the system and an external body such as Earth. For example the internal energy 
of a gas consists of the kinetic energy, K , of the center-of-mass motions of the gas 
molecules relative to a container that is at rest in the reference frame; kinetic energy 
associated with rotational motion. These two motions have no potential energies 
associated to them. Diatomic and polyatomic atoms have vibrational motions which like 
a spring have both kinetic and potential energies. The internal energy also includes other 
contributions to internal energy of the system: the rest –mass energy of the constituents 
and nuclear binding energies associated with the nuclear structure of the constituents. 

Thermal energy is the sum of all the energies except the binding energies and rest 
energies. Temperature is a measure of the thermal energy of a system. At absolute 
zero temperature, the thermal energy of a gas is zero even though the internal energy is 
still a positive constant due the binding energies and rest energies. 

Internal energy of a Solid or Liquid: 

Generally, the intermolecular force associated with the potential energy is repulsive for 
small r and attractive for large r , where r is the separation between molecules. At low 
temperatures, when the average kinetic energy is small, the molecules can form bound 
states with negative energy < 0 and condense into liquids or solids. The Einternal 

intermolecular forces act like restoring forces about an equilibrium distance between 
atoms, a distance at which the potential energy is a minimum. For energies near the 
potential minimum, the atoms vibrate like springs. For larger (but still negative) energies, 
the atoms still vibrate but no longer like springs and with larger amplitudes, undergoing 
thermal expansion. At higher temperatures, due to larger average kinetic energies, the 
internal energy becomes positive, Einternal > 0 . In this case, molecules have enough energy 
to escape intermolecular forces and become a gas. 

29.3.1 Degrees of Freedom 

Each individual gas molecule can translate in any spatial direction. In addition, the 
individual atoms can rotate about any axis. Multi-atomic gas molecules may undergo 
rotational motions associated with the structure of the molecule. Additionally, there may 
be intermolecular vibrational motion between nearby gas particles, and vibrational 
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motion arising from intramolecular forces between atoms that form the molecules.  
Further, there may be more contributions to the internal energy due to the internal 
structure of the individual atoms. Any type of motion that contributes a quadratic term in 
some generalized coordinate to the internal energy is called a degree of freedom. 
Examples include the displacement x of a particle undergoing one-dimensional simple 
harmonic motion position with a corresponding contribution of (1/ 2) kx2 to the potential 
energy, the x -component of the velocity vx for translational motion with a 

corresponding contribution of (1/ 2) mv x 
2 to the kinetic energy, and z -component of 

angular velocity ω z for rotational motion with a corresponding contribution of 

(1/ 2) I ω 2 to the rotational kinetic energy where I is the moment of inertia about the z z z 

z -axis. A single atom can have three translational degrees of freedom and three 
rotational degrees of freedom, as well as internal degrees of freedom associated with its 
atomic structure. 

29.3.2 Equipartition of Energy 

We shall make our first assumption about how the internal energy distributes itself 
among N gas molecules, as follows: 

Each independent degree of freedom has an equal amount of energy equal to (1/ 2) kT , 

where the constant k is called the Boltzmann constant and is equal to 

k = 1.3806505×10-23  J ⋅  K−1 . 

The total internal energy of the ideal gas is then 

1 = N (# of degrees of freedom) kT . (29.3.1) Einternal 2 

This equal division of the energy is called the equipartition of the energy. The 
Boltzmann constant is an arbitrary constant and fixes a choice of temperature scale. Its 
value is chosen such that the temperature scale in Eq. (29.3.1) closely agrees with the 
temperature scales discussed in Section 29.2. 

According to our classical theory of the gas, all of these modes (translational, rotational, 
vibrational) should be equally occupied at all temperatures but in fact they are not. This 
important deviation from classical physics was historically the first instance where a 
more detailed model of the atom was needed to correctly describe the experimental 
observations. 

Not all of the three rotational degrees of freedom contribute to the energy at all 
temperatures. As an example, a nitrogen molecule, N2 , has three translational degrees of 
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freedom but only two rotational degrees of freedom at temperatures lower than the 
temperature at which the diatomic molecule would dissociate (the theory of quantum 
mechanics in necessary to understand this phenomena). Diatomic nitrogen also has an 
intramolecular vibrational degree of freedom that does not contribute to the internal 
energy at room temperatures. As discussed in Section 29.6, N2 constitutes most of the 
earth’s atmosphere (  78% ). 

Example 29.1: Diatomic Nitrogen Gas 

What is the internal energy of the diatomic N2 gas? 

Solution: At room temperature, the internal energy is due to only the five degrees of 
freedom associated with the three translational and two rotational degrees of freedom, 

5 = N kT . (29.3.2) Einternal 2 

As discussed above, at temperatures well above room temperature, but low enough for 
nitrogen to form diatomic molecules, there is an additional vibrational degree of freedom. 
Therefore there are six degrees of freedom and so the internal energy is 

1 = N (# of degrees of freedom) kT = 3N kT . (29.3.3) Einternal 2 

29.4 Ideal Gas 

Consider a gas consisting of a large number of molecules inside a rigid container. We 
shall assume that the volume occupied by the molecules is small compared to the volume 
occupied by the gas, that is, the volume of the container (dilute gas assumption). We also 
assume that the molecules move randomly and satisfy Newton’s Laws of Motion. The 
gas molecules collide with each other and the walls of the container. We shall assume 
that all the collisions are instantaneous and any energy converted to potential energy 
during the collision is recoverable as kinetic energy after the collision is finished. Thus 
the collisions are elastic and have the effect of altering the direction of the velocities of 
the molecules but not their speeds. We also assume that the intermolecular interactions 
contribute negligibly to the internal energy. 

29.4.1 Internal Energy of a Monatomic Gas 

An ideal monatomic gas atom has no internal structure, so we treat it as point particle. 
Therefore there are no possible rotational degrees of freedom or internal degrees of 
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freedom; the ideal gas has only three degrees of freedom, and the internal energy of the 
ideal gas is 

3 = N kT . (29.4.1) Einternal 2 

Eq. (29.4.1) is called the thermal equation of state of a monatomic ideal gas. The average 
kinetic energy of each ideal gas atom is then 

1 m(v2 )ave = 
3 kT (29.4.2) 

2 2 

where (v2 )ave is the average of the square of the speeds and is given by 

3kT (v2 ) = . (29.4.3) ave m 

The temperature of this ideal gas is proportional to the average kinetic of the ideal gas 
molecule. It is an incorrect inference to say that temperature is defined as the mean 
kinetic energy of gas. At low temperatures or non-dilute densities, the kinetic energy is 
no longer proportional to the temperature. For some gases, the kinetic energy depends on 
number density and a more complicated dependence on temperature than that given in 
Eq. (29.4.2). 

29.4.2 Pressure of an Ideal Gas 

Consider an ideal gas consisting of a large number N of identical gas molecules, each of 
of mass m , inside a container of volume V and pressure P . The number of gas 
molecules per unit volume is then n = N / V . The density of the gas is ρ = nm . The gas 
molecules collide elastically with each other and the walls of the container. The pressure 
that the gas exerts on the container is due to the elastic collisions of the gas molecules 
with the walls of the container. We shall now use concepts of energy and momentum to 
model collisions between the gas molecules and the walls of the container in order to 
determine the pressure of the gas in terms of the volume V , particle number N and 
Kelvin temperature T . 
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Figure 29.2 Collision of a gas molecule with a wall of a container 

We begin by considering the collision of one molecule with one of the walls of the 
container, oriented with a unit normal vector pointing out of the container in the positive 
î -direction (Figure 29.2). Suppose the molecule has mass m and is moving with velocity 
 v = v î + v ĵ+ v k̂ . Because the collision with the wall is elastic, the y -and z -x y z 

components of the velocity of the molecule remain constant and the x -component of the 
velocity changes sign (Figure 29.2), resulting in a change of momentum of the gas 
molecule; 

Δp  
m = pm, f −

 pm,i = −2mv î . x (29.4.4) 

Therefore the momentum transferred by the gas molecule to the wall is 

Δp  w = 2mv x î . (29.4.5) 

Now, let’s consider the effect of the collisions of a large number of randomly moving 
molecules. For our purposes, “random” will be taken to mean that any direction of 
motion is possible, and the distribution of velocity components is the same for each 
direction. 

Figure 29.3 Small volume adjacent to the wall of container 

Consider a small rectangular volume ΔV = AΔx of gas adjacent to one of the walls of the 
container as shown in Figure 29.3. There are nAΔx gas molecules in this small volume. 
Let each group have the same x -component of the velocity. Let nj denote the number of 

jth gas molecules in the group with x -component of the velocity vx , j . Because the gas 
molecules are moving randomly, only half of the gas molecules in each group will be 
moving towards the wall in the positive x -direction. Therefore in a time interval 
Δt j = Δx / vx , j , the number of gas molecules that strike the wall with x -component of the 

velocity vx , j is given by 
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Δnj = 
1 

nj AΔx . (29.4.6) 
2 

(During this time interval some gas molecules may leave the edges of the box, but 
because the number that cross the area per second is proportional to the area, in the limit 
as Δx → 0 , the number leaving the edges also approaches zero.) The number of gas 
molecules per second is then 

Δnj 1 Δx 1 = nj A = nj Av x , j . (29.4.7) 
Δt j 2 Δt j 2 

The momentum per second that the gas molecules in this group deliver to the wall is 

Δ p j Δnj 2= 2mv î = njmAv î . (29.4.8) x , j x , jΔt j Δt j 

By Newton’s Second Law, the average force on the wall due to this group of molecules is 
equal to the momentum per second delivered by the gas molecules to the wall; 

Δ 2(F 
 

j ,w )ave = 
p j = njmAv x , j ̂i . (29.4.9) 
Δt j 

The pressure contributed by this group of gas molecules is then 

 
(Fj ,w )ave Pj = = njmv x 

2
, j . (29.4.10) 

A 

The pressure exerted by all the groups of gas molecules is the sum 

j=Ng j= Ng 

P = ∑ (Pj )ave = m ∑ nj vx 
2
, j . (29.4.11) 

j=1 j=1 

The average of the square of the x -component of the velocity is given by 

1 j= N 
2(vx 

2 )ave = ∑
g 

n j vx , j , (29.4.12) 
n j=1 

where n is the number of gas molecules per unit volume in the container. Therefore we 
can rewrite Eq. (29.4.11) as 

P = mn(vx 
2 ) = ρ(v2 )ave , (29.4.13) ave x 
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where ρ is the density of the gas. Because we assumed that the gas molecules are 
moving randomly, the average of the square of the x -, y - and z -components of the 
velocity of the gas molecules are equal, 

(v2 ) = (v2 ) = (v2 ) . (29.4.14) x ave y ave z ave 

The average of the square of the speed (v2 )ave is equal to the sum of the average of the 
squares of the components of the velocity, 

(v2 ) = (v2 ) + (v2 ) + (v2 ) . (29.4.15) ave x ave y ave z ave 

Therefore 
(v2 ) = 3(v2 ) . (29.4.16) ave x ave 

Substituting Eq. (29.4.16) into Eq. (29.4.13) for the pressure of the gas yields 

P = 
1 ρ(v2 ) . (29.4.17) 
3 ave 

The square root of (v2 )ave is called the root-mean-square (“rms”) speed of the 
molecules. 

Substituting Eq. (29.4.3) into Eq. (29.4.17) yields 

P = 
ρkT 
m 

. (29.4.18) 

Recall that the density of the gas 

ρ = 
M 
V 

= 
Nm 
V 

. (29.4.19) 

Therefore Eq. (29.4.18) can be rewritten as 

NkT P = . (29.4.20) 
V 

Eq. (29.4.20) can be re-expressed as 
PV = N kT . (29.4.21) 

Eq. (29.4.21) is known as the ideal gas equation of state also known as the Perfect Gas 
Law or Ideal Gas Law. 
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The total number of molecules in the gas N n= N where n is the number of moles m A m 

and NA is the Avogadro constant. The ideal gas law becomes 

PV = nm NA kT . (29.4.22) 

The universal gas constant is R = k N A = 8.31J ⋅ K−1 ⋅ mol−1 . The ideal gas law can be re-
expressed as 

PV = nm RT . (29.4.23) 

Although we started with atomistic description of the collisions of individual gas 
molecules satisfying the principles of conservation of energy and momentum, we ended 
up with a relationship between the macroscopic variables pressure, volume, number of 
moles, and temperature that are measurable properties of the system. 

One important consequence of the Ideal Gas Law is that equal volumes of different ideal 
gases at the same temperature and pressure must contain the same number of molecules, 

1 PVN = . (29.4.24) 
k T 

When gases combine in chemical reactions at constant temperature and pressure, the 
numbers of each type of gas molecule combine in simple integral proportions. This 
implies that the volumes of the gases must always be in simple integral proportions. 
Avogadro used this last observation about gas reactions to define one mole of a gas as a 
unit for large numbers of particles. 

29.5 Atmosphere 

The atmosphere is a very complex dynamic interaction between many different species of 
atoms and molecules. The average percentage compositions of the eleven most abundant 
gases in the atmosphere up to an altitude of 25 km are shown in Table 1. 

Table 1: Average composition of the atmosphere up to an altitude of 25 km. 

Gas Name Chemical Formula Percent Volume 
Nitrogen N2 78.08% 
Oxygen O2 20.95% 
*Water H2O 0 to 4% 
Argon Ar 0.93% 
*Carbon Dioxide CO2 0.0360% 
Neon Ne 0.0018% 
Helium He 0.0005% 
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*Methane CH4 0.00017% 
Hydrogen H2 0.00005% 
*Nitrous Oxide N2O 0.00003% 
*Ozone O3 0.000004% 

* variable gases 

In the atmosphere, nitrogen forms a diatomic molecule with molar mass 
MN2 

= 28.0 g ⋅ mol−1 and oxygen also forms a diatomic molecule O2 with molar mass 

MO2 
= 32.0 g ⋅ mol−1 . Since these two gases combine to form 99% of the atmosphere, the 

average molar mass of the atmosphere is 

Matm  (0.78)(28.0 g ⋅mol−1) + (0.21)(32.0 g ⋅mol−1) = 28.6 g ⋅mol−1 . (29.5.1). 

The density ρ of the atmosphere as a function of molar mass M atm , the volume V , and 
number of moles nm contained in the volume is given by 

total M n Mm  molar  ρ = = . (29.5.2) 
V V 

How does the pressure of the atmosphere vary a function of height above the surface of 
the earth? In Figure 29.4, the height above sea level in kilometers is plotted against the 
pressure. (Also plotted on the graph as a function of height is the density in kilograms per 
cubic meter.) 
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Figure 29.4 Total pressure and density as a function of geometric altitude 

29.5.1 Isothermal Ideal Gas Atmosphere 

Let’s model the atmosphere as an ideal gas in static equilibrium at constant temperature 
T = 250 K . The pressure at the surface of the earth is P0 = 1.02×105 Pa . The pressure of 
an ideal gas, using the ideal gas equation of state (Eq. (29.4.23)) can be expressed in 
terms of the pressure P , the universal gas constant R , molar mass of the atmosphere 
M atm , and the temperature T , 

total T M  RT  RT  = . (29.5.3) P n R  = = ρm V V M Matm atm 

Thus the equation of state for the density of the gas can be expressed as 

M atm ρ = P . (29.5.4) 
RT 

We use Newton’s Second Law determine the condition on the forces that are acting on a 
small cylindrical volume of atmosphere (Figure 29.5a) in static equilibrium of cross 
section area A located between the heights z and z + Δz . 
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Figures 29.5 (a) (left), mass element of atmosphere, and 
(b) (right), force diagram for the mass element 

The mass contained in this element is the product of the density ρ and the volume 
element ΔV = AΔz , 

Δm = ρΔV = ρ AΔz . (29.5.5) 

The force due to the pressure on the top of the cylinder is directed downward and is equal 
to F(z + Δz) = −P(z + Δz) A k̂ (Figure 29.5(b)) where k̂ is the unit vector directed 
upward. The force due to the pressure on the bottom of the cylinder is directed upward  
and is equal to F(z) = P(z) A k̂ . The pressure on the top P(z + Δz) and bottom P(z) of 
this element are not equal but differ by an amount ΔP = P(z + Δz) − P(z) . The force 
diagram for this element is shown in the Figure 29.5b. 

Because the atmosphere is in static equilibrium in our model, the sum of the forces on the 
volume element are zero,  

F total = Δm a = 

0 . (29.5.6) 

Thus the condition for static equilibrium of forces in the z -direction is 

−P(z + Δz) A + P(z) A − Δm g = 0 . (29.5.7) 

The change is pressure is then given by 

ΔPA = −Δm g . (29.5.8) 

Using Eq. (29.5.5) for the mass Δm , substitute into Eq. (29.5.8), yielding 

ΔP A = −ρ AΔz g = − 
M gatm 

RT 
AΔz P . (29.5.9) 

The derivative of the pressure as a function of height is then linearly proportional to the 
pressure, 

29-15 



     

 
  

  

 
 

 

 
  

  

   
 

 
  

  

 
              

   
 

 
  

  

 
    

 
         

 
 

 

  

  

 
 

 
 

          
          

           
  

 

dP ΔP Matm g= lim = − P . (29.5.10) 
dz Δz→0 Δz RT 

This is a separable differential equation; separating the variables, 

dP Matm g= − dz . (29.5.11) 
P RT 

Integrate Eq. (29.5.11) to yield 

P( z ) dP ⎛ P(z)⎞ z M g M gatm atm ∫ = ln 
⎠⎟ 
= −∫ dz = − z . (29.5.12) 

P0 P ⎝⎜ P0
0 RT RT 

Exponentiate both sides of Eq. (29.5.12) to find the pressure P(z) in the atmosphere as a 
function of height z above the surface of the earth, 

⎛ M g ⎞
P(z) = P0 exp − atm z (29.5.13) 

⎝⎜ RT ⎠⎟ 
. 

Example 29.2 Ideal Gas Atmospheric Pressure 

What is the ratio of atmospheric pressure at z = 9.0 km to the atmospheric pressure at the 
surface of the earth for our ideal-gas atmosphere? 

−2 )P(9.0 km) ⎛ (28.6 × 10−3 kg ⋅ mol−1 )(9.8 m ⋅ s ⎞ 
=exp − (9.0 × 103 m) 

P0 ⎝⎜ (8.31 J ⋅ K −1 ⋅ mol−1 )(250 K) ⎠⎟ (29.5.14) 

= 0.30. 

29.5.2 Earth’s Atmosphere 

We made two assumptions about the atmosphere, that the temperature was uniform and 
that the different gas molecules were uniformly mixed. The actual temperature varies 
according to the specific region of the atmosphere. A plot of temperature as a function of 
height is shown in Figure 29.6. 
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Figure 29.6 Temperature-height profile for U.S. Standard Atmosphere 

In the troposphere, the temperature decreases with altitude; the earth is the main heat 
source in which there is absorption of infrared (IR) radiation by trace gases and clouds, 
and there is convection and conduction of thermal energy. In the stratosphere, the 
temperature increases with altitude due to the absorption of ultraviolet (UV) radiation 
from the sun by ozone. In the mesosphere, the temperature decreases with altitude. The 
atmosphere and earth below the mesosphere are the main source of IR that is absorbed by 
ozone. In the thermosphere, the sun heats the thermosphere by the absorption of X-rays 
and UV by oxygen. The temperatures ranges from 500 K to 2000 K depending on the 
solar activity. 

The lower atmosphere is dominated by turbulent mixing which is independent of the 
molecular mass. Near 100 km, both diffusion and turbulent mixing occur. The upper 
atmosphere composition is due to diffusion. The ratio of mixing of gases changes and the 
mean molar mass decreases as a function of height. Only the lightest gases are present at 
higher levels. The variable components like water vapor and ozone will also affect the 
absorption of solar radiation and IR radiation from the earth. The graph of height vs. 
mean molecular weight is shown in Figure 29.7. The number density of individual 
species and the total number density are plotted in Figure 29.8. 
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Figure 29.7 Mean molecular weight Figure 29.8 Number density of 
as a function of geometric height individual species and total number 

as a function of geometric altitude. 

(Note that in the above axis label and caption for Figure 29.8, the term “molecular 
weight” is used instead of the more appropriate “molecular mass” or “molar mass.”) 
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