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Chapter 5 Two Dimensional Kinematics 

Where was the chap I saw in the picture somewhere? Ah yes, in the dead 
sea floating on his back, reading a book with a parasol open. Couldn’t 
sink if you tried: so thick with salt. Because the weight of the water, no, 
the weight of the body in the water is equal to the weight of the what? Or 
is it the volume equal to the weight? It’s a law something like that. Vance 
in High school cracking his fingerjoints, teaching. The college curriculum. 
Cracking curriculum. What is weight really when you say weight? 
Thirtytwo feet per second per second. Law of falling bodies: per second 
per second. They all fall to the ground. The earth. It’s the force of gravity 
of the earth is the weight. 1 

James Joyce 

5.1 Introduction to the Vector Description of Motion in Two Dimensions 

We have introduced the concepts of position, velocity and acceleration to describe 
motion in one dimension; however we live in a multidimensional universe. In order to 
explore and describe motion in more than one dimension, we shall study the motion of a 
projectile in two-dimension moving under the action of uniform gravitation. 

We extend our definitions of position, velocity, and acceleration for an object that 
moves in two dimensions (in a plane) by treating each direction independently, which we 
can do with vector quantities by resolving each of these quantities into components. For 
example, our definition of velocity as the derivative of position holds for each component!separately. In Cartesian coordinates, the position vector r(t) with respect to some choice 
of origin for the object at time t is given by 

! r(t) = x(t) î + y(t) ĵ . (5.1.1) 

The velocity vector v( )t at time t is the derivative of the position vector, 

 dx( )t dy( )tˆ ˆ ˆ ˆv( )t = i + j ≡ v ( )t i + v ( )t j , (5.1.2) 
dt dt x y 

where vx ( ) ≡ dx t dt and v t ≡ ( ) / dt denote the x -t ( ) / y ( ) dy t and y -components of the 
velocity respectively. 

The acceleration vector a( )t is defined in a similar fashion as the derivative of the 
velocity vector, 

1 James Joyce, Ulysses, The Corrected Text edited by Hans Walter Gabler with Wolfhard 
Steppe and Claus Melchior, Random House, New York. 
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 dvx ( )t ˆ dvy ( )t ˆ ˆ ˆa( )t = i + j ≡ a ( )t i + a ( )t j, (5.1.3) 
dt dt x y 

where a ( ) ≡ dv t dt and  a t ≡ dv ( ) / t ( ) / ( ) t dt denote the x - and y -components of the x x y y 

acceleration. 

5.2 Projectile Motion 

Consider the motion of a body that is released at time t = 0 with an initial velocity v ! 0 . 
Two paths are shown in Figure 5.1. 

parabolic orbit 

actual orbit 
v0 

 

   

 
      

 
 

  
 

              
 

 

 
 

    
 

       
        

               
          

          
          

         
          

  
 

 
 

  
 

        
         

          

Figure 5.1 Actual orbit accounting for air resistance and parabolic orbit of a projectile 

The dotted path represents a parabolic trajectory and the solid path represents the actual 
trajectory. The difference between the two paths is due to air resistance acting on the ! 

Fair object, = −bv2v̂ , where v̂ is a unit vector in the direction of the velocity. (For the 
!orbits shown in Figure 5.1, b = 0.01 N ⋅s2 ⋅ m-2 , = 30.0 m ⋅s , the initial launch angle v0 

with respect to the horizontal θ0 = 21! , and the actual horizontal distance traveled is 
71.7% of the projectile orbit.). There are other factors that can influence the path of 
motion; a rotating body or a special shape can alter the flow of air around the body, 
which may induce a curved motion or lift like the flight of a baseball or golf ball. We 
shall begin our analysis by neglecting all interactions except the gravitational interaction. 

y 

. 

x(t) 

y(t) 

O 
x 

y0 

r(t)
0 

v0 î 
ĵ 

Figure 5.2 A coordinate sketch for parabolic motion. 

Choose coordinates with the positive y-axis in the upward vertical direction and the 
positive x-axis in the horizontal direction in the direction that the object is moving 
horizontally. Choose the origin at the ground immediately below the point the object is 
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!released. Figure 5.2 shows our coordinate system with the position of the object r(t) at 
time t , the initial velocity v ! 0 , and the initial angle θ0 with respect to the horizontal, and 
the coordinate functions x(t) and y(t) . 

Initial Conditions: 

. 

O 
x 

y 

0 

v0 

î 
ĵ 

v 
x ,0 

v 
y ,0 

Figure 5.3 A vector decomposition of the initial velocity 

Decompose the initial velocity vector into its components: 

! v0 = vx ,0 î + vy ,0 ĵ . (5.1.4) 

The vector decomposition for the initial velocity is shown in Figure 5.3. Often the 
description of the flight of a projectile includes the statement, “a body is projected with 
an initial speed v0 at an angle θ0 with respect to the horizontal.” The components of the 
initial velocity can be expressed in terms of the initial speed and angle according to 

vx,0 = v0 cosθ0 , (5.1.5) 
vy ,0 = v0 sinθ0 . (5.1.6) 

Because the initial speed is the magnitude of the initial velocity, we have that 

2 2 )1/ 2 v = (v + v . (5.1.7) 0 x ,0 y ,0 

The angle θ0 is related to the components of the initial velocity by 

θ0 = tan−1(vy ,0 / vx ,0 ) . (5.1.8) 

Equation (5.1.8) will give two values for the angle θ0 , so care must be taken to choose 
the correct physical value. The initial position vector generally is given by 

! r0 = x0 î + y0 ĵ . (5.1.9) 

Note that the trajectory in Figure 5.3 has x0 = 0 , but this will not always be the case. 
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Force Diagram: 

We begin by neglecting all forces other than the gravitational interaction between the 
object and the earth. This force acts downward with magnitude mg , where m is the 
mass of the object and g = 9.8 m ⋅s−2 . Figure 5.4 shows the force diagram on the object. 

y 

. 

O 
x 

î ĵ 

Fg 

Figure 5.4 Free-body force diagram on the object with the action of gravity 

The vector decomposition of the force is 

 
Fg = −mg ĵ . (5.1.10) 

Equations of Motions: 

The force diagram reminds us that the force is acting in the y -direction. Newton’s 
! 
F total Second Law states that the sum of the force, , acting on the object is equal to the product of the mass m and the acceleration vector a , 

 
F total  = ma . (5.1.11) 

  
F total Because we are modeling the motion with only one force, we have that = Fg . This is 

a vector equation; the components are equated separately: 

−mg = ma y , (5.1.12) 

0 = ma x . (5.1.13) 

Therefore the y -component of the acceleration is 

ay = −g. (5.1.14) 

We see that the acceleration is a constant and is independent of the mass of the object. 
Notice that ay < 0 . This is because we chose our positive y -direction to point upwards. 
The sign of the y -component of acceleration is determined by how we choose our 
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coordinate system. Because there are no horizontal forces acting on the object, we 
conclude that the acceleration in the horizontal direction is also zero 

ax = 0 . (5.1.15) 

Therefore the x -component of the velocity remains unchanged throughout the flight of 
the object. 

The acceleration in the vertical direction is constant for all bodies near the surface of the 
Earth, independent of the mass of the object, thus confirming Galileo’s Law of Free 
Falling Bodies. Notice that the equation of motion (Equation (5.1.14)) generalizes the 
experimental observation that objects fall with constant acceleration. Our statement about 
the acceleration of objects near the surface of Earth depends on our model force law Eq. 
(5.1.10), and if subsequent observations show the acceleration is not constant then we 
either must include additional forces (for example, air resistance), or modify the force 
law (for objects that are no longer near the surface of Earth, or consider that Earth is a 
non-symmetric non-uniform body), or take into account the rotational motion of the Earth. 

We can now integrate the equation of motions (Eqs. (5.1.14) and (5.1.15)) 
separately for the x - and y - directions to find expressions for the x - and y -components 
of velocity and position: 

t ′= t 

v (t) − v = a (t′) dt′ = 0 ⇒ v (t) = v x x ,0 ∫ x x x ,0 
t ′=0 

t ′= t t ′= t 

x(t) − x = v (t′) dt′ = v dt′ = v t ⇒ x(t) = x + v t0 ∫ x ∫ x ,0 x ,0 0 x ,0 
t ′=0 t ′=0 

t ′= t t ′= t 

v (t) − v = a (t′) dt′ = − g dt′ = −gt ⇒ v (t) = v − gty y ,0 ∫ y ∫ y y ,0 
t ′=0 t ′=0 

t′=t t′=t 

y(t) − y0 = ∫ vy (t′)dt′ = ∫ (v − gt) dt′ = v t − (1/ 2)gt2 ⇒ y(t) = y0 + vy ,0t − (1/ 2)gt2. y ,0 y ,0 
t′=0 t′=0 

The complete set of vector equations for position and velocity for each independent 
direction of motion are given by 

 r(t) = x(t) î + y(t) ĵ = (x0 + vx ,0t) î + ( y0 + vy ,0 t + (1/ 2)ay t
2 ) ̂j , (5.1.16) 

 v(t) = v (t) î + v (t) ĵ = v î + (v + a t) ĵ , (5.1.17) x y x ,0 y ,0 y 
 ˆ ˆ ˆa( )t = a ( )t i + a ( )t j = a j . (5.1.18) x y y 

Example 5.1 Time of Flight and Maximum Height of a Projectile 
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A person throws a stone at an initial angle θ0 = 45! from the horizontal with an initial 

speed of v0 = 20 m ⋅ s-1 . The point of release of the stone is at a height d = 2 m above the 
ground. You may neglect air resistance. a) How long does it take the stone to reach the 
highest point of its trajectory? b) What was the maximum vertical displacement of the 
stone? Ignore air resistance. 

Solution: Choose the origin on the ground directly underneath the point where the stone 
is released. We choose the positive y-axis in the upward vertical direction and the 
positive x-axis in the horizontal direction in the direction that the object is moving 
horizontally. Set t = 0 the instant the stone is released. At t = 0 the initial conditions are 
then x0 = 0 and y0 = d . The initial x - and y -components of the velocity are given by 
Eqs. (5.1.5) and (5.1.6). 

At time t the stone has coordinates (x(t), y(t)) . These coordinate functions are shown in 
Figure 5.5. 

Figure 5.5: Coordinate functions for stone 

Figure 5.6 Plot of the y-component of the position as a function of time 

The slope of this graph at any time t yields the instantaneous y-component of the 
velocity vy (t) at that time t . Figure 5.5 is a plot of y(t) vs. x(t) and Figure 5.6 is a plot 
of y(t) vs. t . There are several important things to notice about Figures 5.5 and 5.6. The 
first point is that the abscissa axes are different in both figures. The second thing to notice 
is that at t = 0 , the slope of the graph in Figure 5.5 is equal to 
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vdy ⎛ dy / dt ⎞ = = y ,0 = tanθ0 , (5.1.19) 
dx t=0 ⎝⎜ dx / dt ⎠⎟ v 

t=0 x ,0 

while at t = 0 the slope of the graph in Figure 5.6 is equal to 

dy = vy ,0 . (5.1.20) 
dt t=0 

The slope of this graph in Figure 5.6 at any time t yields the instantaneous y-component 
of the velocity vy (t) at that time t . Let t = t1 correspond to the instant the stone is at its 
maximal vertical position, the highest point in the flight. The final thing to notice about 
Figure 5.6 is that at t = t1 the slope is zero or vy (t = t1) = 0 . Therefore 

vy (t1) = v0 sinθ0 − gt1 = 0 . (5.1.21) 

Solving Eq. (5.1.21) for t1 yields, 

v0 sinθ0 (20 m ⋅s-1)sin(45! )t1 = = = 1.44 s . (5.1.22) 
g -2 9.8 m ⋅s 

The graph in Figure 5.7 shows a plot of vy (t) as a function of time. Notice that at t = 0 

the intercept is positive indicting that vy ,0 is positive which means that the stone was 

thrown upwards. The y -component of the velocity changes sign at t = t1 indicating that 
the stone is reversing its direction and starting to move downwards. 

15 

10 

5 

0 

-5 

-10 

-15 

1 2 3 4 

t1 
t 

v y (t) 

[m s 1] 
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Figure 5.7 y -component of the velocity as a function of time 
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We now substitute the expression for t = ttop (Eq. (5.1.22)) into the y -component of the 
position in Eq. (5.1.16) to find the maximal height of the stone above the ground 

v0 sinθ0 1 ⎛ v0 sinθ0 ⎞ 
2 

y(t = t sinθ0 − gtop ) = d + v0 g 2 ⎝⎜ g ⎠⎟ , (5.1.23) 
v0

2 sin2 θ0 (20 m ⋅s-1)2 sin2(45 )= d + = 2 m + = 12.2 m -2 )2g 2(9.8 m ⋅s 

5.2.1 Orbit equation 

So far our description of the motion has emphasized the independence of the spatial 
dimensions, treating all of the kinematic quantities as functions of time. We shall now 
eliminate time from our equation and find the orbit equation of the body undergoing 
projectile motion.  We begin with the x -component of the position in Eq. (5.1.16), 

x( )t = x0 + vx,0 t (5.1.24) 

and solve Equation (5.1.24) for time t as a function of x( )t , 

x( )t − x
t = 0 . (5.1.25) 

vx,0 

The y -component of the position in Eq. (5.1.16) is given by 

1 2y( )t = y0 + vy ,0 t − g t . (5.1.26) 
2 

We then substitute Eq. (5.1.25) into Eq. (5.1.26) yielding 

⎛ x( )t − x0 ⎞ 1 ⎛ x( )t − x0 ⎞
2 

y( )t = y0 + vy ,0 ⎜ ⎟ − g ⎜ ⎟ . (5.1.27) ⎜ ⎟ ⎜ ⎟v 2 v⎝ x,0 ⎠ ⎝ x,0 ⎠ 

A little algebraic simplification yields the equation for a parabola: 

1 g 2 ⎛ g x0 vy ,0 ⎞ vy ,0 1 g 2y( )t = − x( )t + ⎜ + ⎟ x( )t − x − x + y . (5.1.28) 2 2 0 2 0 0⎜ ⎟2 v v v v 2 vx,0 ⎝ x,0 x,0 ⎠ x,0 x,0 

The graph of y( )t as a function of x( )t is shown in Figure 5.8. 
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Figure 5.8 The parabolic orbit 

The velocity vector is given by 

 dx( )t dy( )t v( )t = î + ĵ ≡ vx ( )t î + vy ( )t ĵ . (5.1.29) 
dt dt 

The direction of the velocity vector at a point (x(t), y(t)) can be determined from the 
components. Let θ be the angle that the velocity vector forms with respect to the positive 
x -axis. Then 

⎛ vy (t)⎞ ⎛ dy / dt ⎞ ⎛ dy ⎞θ = tan−1 
⎜ ⎟ = tan−1 

⎠⎟ 
= tan−1 

⎠⎟ 
. (5.1.30) 

⎝ vx (t)⎠ ⎝⎜ dx / dt ⎝⎜ dx 

Differentiating Eq. (5.1.28) with respect to x yields 

⎛ ⎞dy g x0 
v 

= − 
g 
2 

y ,0 

x ,0 

(5.1.31) x + +⎜
⎝ 

⎟
⎠ 

.2dx vv v x ,0 x ,0 

The direction of the velocity vector at a point (x(t), y(t)) is therefore 

⎛ ⎞⎛ ⎞g x0 
v 

− 
g 
2 

y ,0 

x ,0 

θ = tan−1 (5.1.32) x + +⎜
⎝ 

⎟
⎠ 

⎜
⎝ 

⎟
⎠ 

.2 vv v x ,0 x ,0 

Although we can determine the angle of the velocity, we cannot determine how fast the 
body moves along the parabolic orbit from our graph of y(x) ; the magnitude of the 
velocity cannot be determined from information about the tangent line. 
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If we choose our origin at the initial position of the body at t = 0 , then x0 = 0 and y0 = 0 . 
Our orbit equation, Equation (5.1.28) can now be simplified to 

1 g
x(t)2 + 

vy ,0 y(t) = − 2 x(t) . (5.1.33) 
2 v v x ,0 x ,0 

Example 5.2 Hitting the Bucket 

A person is holding a pail while standing on a ladder. The person releases the pail from 
rest at a height h1 above the ground. A second person, standing a horizontal distance s 
from the pail, aims and throws a ball the instant the pail is released in order to hit the pail. 
The person releases the ball at a height h2 above the ground, with an initial speed v0 , and 
at an angle θ0 with respect to the horizontal. Assume that v0 is large enough so that the 
stone will at least travel a horizontal distance s before it hits the ground. You may ignore 
air resistance. 

h2 

h1 

s 

Figure 5.9: Example 5.2 

a) Find an expression for the angle θ0 that the person aims the ball in order to hit the 
pail. Does the answer depend on the initial velocity? 

b) Find an expression for the time of collision as a function of the initial speed of the 
ball v0 , and the quantities h1 , h2 , and s . 

c) Find an expression for the height above the ground where the collision occurred 
as a function of the initial speed of the ball v0 , and the quantities h1 , h2 , and s . 

Solution: 

There are two objects involved in this problem. Each object is undergoing free fall, so 
there is only one stage of motion for each object. The pail is undergoing one-dimensional 
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motion. The ball is undergoing two-dimensional motion. The parameters h1 , h2 , v0 , and 
s are unspecified, so our answers will be functions of those quantities. Figure 5.9 shows 
a sketch of the motion of all the bodies in this problem. 

Choose an origin on the ground directly underneath the point where the ball is released, 
upwards for the positive y -direction and towards the pail for the positive x -direction. 
Choose position coordinates for the pail as follows. The horizontal coordinate is constant 
and given by x1 = s . The vertical coordinate represents the height above the ground and 
is denoted by y1(t) . The ball has coordinates (x2(t), y2(t)) . We show these coordinates in 
the Figure 5.10. 

h2 

h1 

x2 (t) 

y2 (t) 
y1(t) 

x1 = s 

v0 

0 

O 

Figure 5.10: Coordinate System 

The pail undergoes constant acceleration a1,y = −g in the vertical direction and the ball 
undergoes uniform motion in the horizontal direction and constant acceleration in the 
vertical direction, with a2,x = 0 and a2,y = −g . 

The initial conditions for the pail are (v1,0 ) y = 0 , x1,0 = s , y1,0 = h1 . The equations for 
position and velocity of the pail simplify to 

y1(t) = h1 − 
1 gt2 (5.1.34) 
2 

vy ,1(t) = −gt . (5.1.35) 

The initial position is given by x2,0 = 0 , y2,0 = h2 . The components of the initial velocity 

are given by (v2,0 ) y = v0 sin(θ0 ) and (v2,0 )x = v0 cos(θ0 ) , where v0 is the magnitude of the 

initial velocity and θ0 is the initial angle with respect to the horizontal. The equations for 
the position and velocity of the ball simplify to 

11 



 

     
 

  
  

 
  

  

     
 

                 
          

                
 

       
           

            
 

 
     
     
 

            
 

 
  

  

     
 

  
     
 

   
 

 
  

  

 
       

 
     
 

            
  

 

x2 (t) = v0 cos(θ0 )t (5.1.36) 
(t) = v0 cos(θ0 ) (5.1.37) v2,x 

y2 (t) = h2 + v0 sin(θ0 )t − 
1 gt2 (5.1.38) 
2 

(t) = v0 sin(θ0 ) − gt . (5.1.39) v2,y 

Note that the quantities h1 , h2 , v0 , and s should be treated as known quantities although 
no numerical values were given. There are six independent equations with 8 as yet 
unspecified quantities y1(t) , t , y2 (t) , x2 (t) , v1,y (t) , v2,y (t) , v2,x (t) , and θ0 . 

So we need two more conditions, in order to find expressions for the initial angle, θ0 , the 
time of collision, ta , and the spatial location of the collision point specified by y1(ta ) or 
y2 (ta ) . At the collision time t = ta , the collision occurs when the two balls are located at 
the same position. Therefore 

(t ) = (t ) (5.1.40) y1 a y2 a 

(t ) = x1 = s . (5.1.41) x2 a 

We shall now apply these conditions that must be satisfied in order for the ball to hit the 
pail. 

1 2 1 2h1 − gt = h2 + v0 sin(θ0 )t − gt (5.1.42) a a a2 2 
s = v0 cos(θ0 )ta . (5.1.43) 

Eq. (5.1.42) simplifies to 
v0 sin(θ0 )ta = h1 − h2 (5.1.44) 

Dividing Eq. (5.1.44) by Eq. (5.1.43) yields 

v0 sin(θ0 )ta h1 − h2= tan(θ0 ) = . (5.1.45) 
cos(θ0 )tv0 a s2 

So the initial angle θ0 is independent of v0 , and is given by 

θ0 = tan−1((h1 − h2 ) / s) . (5.1.46) 

From the Figure 5.11 we can see that tan(θ0 ) = (h1 − h2 ) / s implies that the second person 
aims the ball at the initial position of the pail. 
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h2 

h1 

s 
0 

O 

h1 h2 

Figure 5.11: Geometry of collision 

In order to find the time that the ball collides with the pail, we begin by squaring both 
Eqs. (5.1.44) and (5.1.43), then utilize the trigonometric identity sin2(θ0 ) + cos2(θ0 ) = 1 . 
Our squared equations become 

2 sin2(θ0 )t )2 (5.1.47) v0 a 
2 = (h1 − h2 

2 2 2v0 cos2(θ0 )ta = s . (5.1.48) 

Adding these equations together and using the identity sin2(θ0 ) + cos2(θ0 ) = 1 and taking 
square roots yields 

)2 )1/2 t = (s2 + (h1 . (5.1.49) v0 a − h2 

We can solve Eq. (5.1.49) for the time of collision 

1 )2 )1 2 . (5.1.50) t = (s2 + (h1a − h2v0 

We can now use the y -coordinate function of either the ball or the pail at t = ta to find 
the height that the ball collides with the pail. Because the pail had no initial y -
component of the velocity, it’s easier to use the condition for the pail, 

g(s2 + (h1 − h2 )2 )
(t ) = h1 − . (5.1.51) y1 a 2v0

2 

Comments: 

(1) Eqs. (5.1.49) and (5.1.50) can be arrived at in a very direct way. Suppose we analyze ! 
the motion in a reference frame that is accelerating downward with A = −g ̂j . In that 
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reference frame both the pail and the stone are not accelerating; the pail is at rest and the 
stone is travelling with speed v0 , at an angle θ0 . Therefore in order to hit the stationary 
pail, the stone must be thrown at the angle given by Eq. (5.1.46) and the time that it takes 
to hit the stone is just given by distance traveled divided by speed, Eq. (5.1.50). 
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