
  

     

  	
  	

  	
  	

  	
   	

  	
  	
  	

   	
  	

  	
 

Chapter 9 Circular Motion Dynamics 

9.1 Introduction Newton’s Second Law and Circular Motion ................................. 2 

9.2 Universal Law of Gravitation and the Circular Orbit of the Moon .................. 2 
9.2.1 Universal Law of Gravitation ......................................................................... 3 

9.2.2 Kepler’s Third Law and Circular Motion..................................................... 5 
9.3 Worked Examples Circular Motion...................................................................... 6 

Example 9.1 Geosynchronous Orbit ....................................................................... 6 
Example 9.2 Double Star System............................................................................. 7 

Example 9.3 Rotating Objects ............................................................................... 10 
Example 9.4 Tension in a Rope.............................................................................. 12 

Example 9.5 Object Sliding in a Circular Orbit on the Inside of a Cone .......... 13 
Example 9.6 Coin on a Rotating Turntable.......................................................... 15 

Appendix 9A The Gravitational Field of a Spherical Shell of Matter ....................... 17 

9-1 



  

        
 

 
         

 
                                                                   
                     

 
    

 
           

         
  

 

 
    

  

 
         

  

  
  

  

 
  

  

 

    
 

 
     

 
         

 
        

          
      

          
  

  

                                                
  

 

Chapter 9 Equation Chapter 9 Section 1Circular Motion 
Dynamics 

I shall now recall to mind that the motion of the heavenly bodies is 
circular, since the motion appropriate to a sphere is rotation in a circle.1 

Nicholas Copernicus 

9.1 Introduction Newton’s Second Law and Circular Motion 

We have already shown that when an object moves in a circular orbit of radius r with angular velocity ω , it is most convenient to choose polar coordinates to describe the 
position, velocity and acceleration vectors. In particular, the acceleration vector is given 
by 

 ⎛ dθ ⎞ 
2 

d 2θ a(t) = −r r̂(t) + r θ̂(t) . (9.1.1) 
⎝⎜ dt ⎠⎟ dt2 

Then Newton’s Second Law,  ˆbe decomposed into radial ( a can ,F = m r -) and tangential 
 

( θ̂ -) components 
⎛ dθ ⎞ 

2 

F = −mr (circular motion) , (9.1.2) r ⎝⎜ dt ⎠⎟ 

d 2θFθ 
= mr (circular motion) . (9.1.3) 

dt2 

For the special case of uniform circular motion, d 2θ / dt2 = 0 , and so the sum of the 
tangential components of the force acting on the object must therefore be zero, 

Fθ 
= 0 (uniform circular motion) . (9.1.4) 

9.2 Universal Law of Gravitation and the Circular Orbit of the Moon 

An important example of (approximate) circular motion is the orbit of the Moon around 
the Earth. We can approximately calculate the time T the Moon takes to complete one 
circle around the earth (a calculation of great importance to early lunar calendar systems, 
which became the basis for our current model.) Denote the distance from the moon to the 
center of the earth by Re, m . 

1 Dedicatory Letter to Pope Paul III. 
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Because the Moon moves nearly in a circular orbit with angular speed ω = 2π / T 
it is accelerating towards the Earth. The radial component of the acceleration (centripetal 
acceleration) is 

4π 2 R 
ar = − e, m . (9.2.1) 

T 2 

According to Newton’s Second Law, there must be a centripetal force acting on the 
Moon directed towards the center of the Earth that accounts for this inward acceleration. 

9.2.1 Universal Law of Gravitation 

Newton’s Universal Law of Gravitation describes the gravitational force between two 
bodies 1 and 2 with masses m1 and m2 respectively. This force is a radial force (always 
pointing along the radial line connecting the masses) and the magnitude is proportional to 
the inverse square of the distance that separates the bodies. Then the force on object 2 
due to the gravitational interaction between the bodies is given by, 

 m1 m2= −G ˆ (9.2.2) F1, 2 2 r1, 2 , r1, 2 

where is the distance between the two bodies and r̂ is the unit vector located at the r1,2 1,2 

position of object 2 and pointing from object 1 towards object 2. The Universal 
−11 2 −2Gravitation Constant is G = 6.67×10 N ⋅ m ⋅ kg . Figure 9.1 shows the direction of the 

forces on bodies 1 and 2 along with the unit vector r̂1,2 . 

Figure 9.1 Gravitational force of interaction between two bodies 

Newton realized that there were still some subtleties involved. First, why should 
the mass of the Earth act as if it were all placed at the center? Newton showed that for a 
perfect sphere with uniform mass distribution, all the mass may be assumed to be located 
at the center. (This calculation is difficult and can be found in Appendix 9A to this 
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chapter.) We assume for the present calculation that the Earth and the Moon are perfect 
spheres with uniform mass distribution. 

Second, does this gravitational force between the Earth and the Moon form an 
action-reaction Third Law pair? When Newton first explained the Moon’s motion in 
1666, he had still not formulated the Third Law, which accounted for the long delay in 
the publication of the Principia. The link between the concept of force and the concept of 
an action-reaction pair of forces was the last piece needed to solve the puzzle of the effect 
of gravity on planetary orbits. Once Newton realized that the gravitational force between 
any two bodies forms an action-reaction pair, and satisfies both the Universal Law of 
Gravitation and his newly formulated Third Law, he was able to solve the oldest and 
most important physics problem of his time, the motion of the planets. 

The test for the Universal Law of Gravitation was performed through 
experimental observation of the motion of planets, which turned out to be resoundingly 
successful. For almost 200 years, Newton’s Universal Law was in excellent agreement 
with observation. A sign of more complicated physics ahead, the first discrepancy only 
occurred when a slight deviation of the motion of Mercury was experimentally confirmed 
in 1882. The prediction of this deviation was the first success of Einstein’s Theory of 
General Relativity (formulated in 1915). 

We can apply this Universal Law of Gravitation to calculate the period of the 
Moon’s orbit around the Earth. The mass of the Moon is m1 = 7.36×1022 kg and the mass 
of the Earth is m2 = 5.98×1024 kg . The distance from the Earth to the Moon is 

R e, m = 3.82 × 108 m . We show the force diagram in Figure 9.2. 

Figure 9.2 Gravitational force of moon 

Newton’s Second Law of motion for the radial direction becomes 

4π 2 Rm1 m2 e, m −G = −m1 . (9.2.3) 2 T 2R e, m 

We can solve this equation for the period of the orbit, 
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2 3 
e,m 

2 

4 R
T 

G m 

π 
= . (9.2.4) 

Substitute the given values for the radius of the orbit, the mass of the earth, and the 
universal gravitational constant. The period of the orbit is 

T = 
4π 2 (3.82 ×108 m)3 

(6.67 ×10−11 N ⋅ m2 ⋅ kg−2 )(5.98 ×1024 kg) 
= 2.35 ×106 s . (9.2.5) 

This period is given in days by 

⎛ 1 day T = (2.35×106 s) 
⎝⎜ 8.64 ×104 

⎞ 
⎠⎟ 
= 27.2 days. 

s 
(9.2.6) 

This period is called the sidereal month because it is the time that it takes for the Moon to 
return to a given position with respect to the stars. 

The actual time T1 between full moons, called the synodic month (the average 
period of the Moon’s revolution with respect to the earth and is 29.53 days, it may range 
between 29.27 days and 29.83 days), is longer than the sidereal month because the Earth 
is traveling around the Sun. So for the next full moon, the Moon must travel a little 
farther than one full circle around the Earth in order to be on the other side of the Earth 
from the Sun (Figure 9.3). 

Figure 9.3: Orbital motion between full moons 

Therefore the time T1 between consecutive full moons is approximately T1  T + ΔT 
where ΔT  T / 12 = 2.3 days . So T1  29.5 days . 

9.2.2 Kepler’s Third Law and Circular Motion 

The first thing that we notice from the above solution is that the period does not depend 
on the mass of the Moon. We also notice that the square of the period is proportional to 
the cube of the distance between the Earth and the Moon, 
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4π 2R3 2 e,m T = . (9.2.7) 
Gm2 

This is an example of Kepler’s Third Law, of which Newton was aware. This 
confirmation was convincing evidence to Newton that his Universal Law of Gravitation 
was the correct mathematical description of the gravitational force law, even though he 
still could not explain what “caused” gravity. 

9.3 Worked Examples Circular Motion 

Example 9.1 Geosynchronous Orbit 

A geostationary satellite goes around the earth once every 23 hours 56 minutes and 4 
seconds, (a sidereal day, shorter than the noon-to-noon solar day of 24 hours) so that its 
position appears stationary with respect to a ground station. The mass of the earth is 
m e = 5.98 × 1024 kg . The mean radius of the earth is R e = 6.37 × 106 m . The universal 

constant of gravitation is G = 6.67 × 10−11 N ⋅ m2 ⋅ kg−2 . What is the radius of the orbit of a 
geostationary satellite? Approximately how many earth radii is this distance? 

Solution: The satellite’s motion can be modeled as uniform circular motion. The 
gravitational force between the earth and the satellite keeps the satellite moving in a 
circle (In Figure 9.4, the orbit is close to a scale drawing of the orbit). The acceleration of 
the satellite is directed towards the center of the circle, that is, along the radially inward 
direction. 

Figure 9.4 Geostationary satellite orbit (close to a scale drawing of orbit). 

Choose the origin at the center of the earth, and the unit vector r̂ along the radial 
direction. This choice of coordinates makes sense in this problem since the direction of 
acceleration is along the radial direction. 
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 Let r be the position vector of the satellite. The magnitude of r (we denote it as rs ) is 
the distance of the satellite from the center of the earth, and hence the radius of its 
circular orbit. Let ω be the angular velocity of the satellite, and the period is T = 2π / ω . 
The acceleration is directed inward, with magnitude rsω

2 ; in vector form, 

 a = −rsω 2r̂ . (9.3.1) 

Apply Newton’s Second Law to the satellite for the radial component. The only force in 
this direction is the gravitational force due to the Earth, 

 
F = −m ω 2r r̂ . (9.3.2) grav s s 

The inward radial force on the satellite is the gravitational attraction of the earth, 

m me−G s r̂ = −m ω 2r r̂ . (9.3.3) 2 s srs 
Equating the r̂ components, 

m meG s = m ω 2r . (9.3.4) 2 s srs 

Solving for the radius of orbit of the satellite r s , 

1/ 3 
⎛ Gme ⎞ rs = ⎜ ⎟ . (9.3.5) 
⎝ ω 2 ⎠ 

The period T of the satellite’s orbit in seconds is 86164 s and so the angular speed is 

2π 2π −5 −1ω = = = 7.2921×10 s . (9.3.6) 
T 86164 s 

Using the values of ω , G and me in Equation (9.3.5), we determine rs , 

rs = 4.22×107 m = 6.62 Re . (9.3.7) 

Example 9.2 Double Star System 

Consider a double star system under the influence of gravitational force between the 
stars. Star 1 has mass m1 and star 2 has mass m2 . Assume that each star undergoes 
uniform circular motion such that the stars are always a fixed distance s apart (rotating 
counterclockwise in Figure 9.5). What is the period of the orbit? 
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Figure 9.5 Two stars undergoing circular orbits about each other 

Solution: Because the distance between the two stars doesn’t change as they orbit about 
each other, there is a central point where the lines connecting the two objects intersect as 
the objects move, as can be seen in the figure above. (We will see later on in the course 
that central point is the center of mass of the system.) Choose radial coordinates for each 
star with origin at that central point. Let r̂1 be a unit vector at Star 1 pointing radially 

 
1 1̂ , where r1away from the center of mass. The position of object 1 is then = r1 is the 

distance from the central point. Let r̂2 be a unit vector at Star 2 pointing radially away 
from the center of mass. The position of object 2 is then r2 = r2 r̂2 , where r2 is the 

distance from the central point. Because the distance between the two stars is fixed we 
have that 

s = r1 + r2 . 

The coordinate system is shown in Figure 9.6 
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Figure 9.6 Coordinate system for double star orbits 

The gravitational force on object 1 is then 

 Gm1m2= − r̂1 .F2,1 2s 

The gravitational force on object 2 is then 

 Gm1m2= − r̂2 .F1,2 2s 

The force diagrams on the two stars are shown in Figure 9.7. 

Figure 9.7 Force diagrams on objects 1 and 2 

Let ω denote the magnitude of the angular velocity of each star about the central point.  Then Newton’s Second Law, F = m a , for Star 1 in the radial direction r̂1 is1 1 1 

m1 m2−G 2 = −m1 r1 ω 2 . 
s 

We can solve this for r1 , 
m r = G 2 .1 2 2ω s 

 Newton’s Second Law, F = m a , for Star 2 in the radial direction ˆ is2 2 2 r2 
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m1 m2 ω 2−G 2 = −m2 r2 . 
s 

We can solve this for r2 , 
m1r2 = G 2 2 .

ω s 

Because s , the distance between the stars, is constant 

m2 m1 (m2 + m1)
s = r1 + r2 = G + G = G2 2 2 .ω 2s ω 2s ω 2s 

Thus the magnitude of the angular velocity is 

⎛ (m2 + m1)⎞
1 2 

ω = G 3 ,
⎝⎜ s ⎠⎟ 

and the period is then 

2π ⎛ 4π 2s3 ⎞
T = = . (9.3.8) 

ω ⎝⎜ G(m2 + m1)⎠⎟ 

Note that both masses appear in the above expression for the period unlike the expression 
for Kepler’s Law for circular orbits. Eq. (9.2.7). The reason is that in the argument 
leading up to Eq. (9.2.7), we assumed that m1 << m2 , this was equivalent to assuming that 
the central point was located at the center of the Earth. If we used Eq. (9.3.8) instead we 
would find that the orbital period for the circular motion of the Earth and moon about 
each other is 

1 2 

T = 
4π 2 (3.82 ×108 m)3 

(6.67 ×10−11 N ⋅m2 ⋅kg−2 )(5.98 ×1024 kg +7.36 ×1022 kg) 
= 2.33×106 s , 

which is 1.43 × 104 s = 0.17 d shorter than our previous calculation. 

Example 9.3 Rotating Objects 

Two objects 1 and 2 of mass m1 and m2 are whirling around a shaft with a constant 
angular velocity ω . The first object is a distance d from the central axis, and the second 
object is a distance 2d from the axis (Figure 9.8). You may ignore the mass of the strings 
and neglect the effect of gravity. (a) What is the tension in the string between the inner 
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object and the outer object? (b) What is the tension in the string between the shaft and the 
inner object? 

Figure 9.8 Objects attached to a rotating shaft 

Solution: We begin by drawing separate force diagrams, Figure 9.9a for object 1 and 
Figure 9.9b for object 2. 

(a) (b) 

Figure 9.9 (a) and 9.9 (b) Free-body force diagrams for objects 1 and 2 

 Newton’s Second Law, F = m a , for the inner object in the radial direction is 1 1 1 

r̂ : T2 − T1 = −m1 d ω 2 . 

 Newton’s Second Law, F = m a , for the outer object in the radial direction is 2 2 2 

r̂ : − T2 = −m2 2d ω 2 . 

The tension in the string between the inner object and the outer object is therefore 

T2 = m2 2d ω 2 . 
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Using this result for T2 in the force equation for the inner object yields 

m2 2d ω 2 − T1 = −m1 d ω 2 , 

which can be solved for the tension in the string between the shaft and the inner object 

T1 = d ω 2 (m1 + 2m2 ) . 

Example 9.4 Tension in a Rope 

A uniform rope of mass mand length L is attached to shaft that is rotating at constant 
angular velocity ω . Find the tension in the rope as a function of distance from the shaft. 
You may ignore the effect of gravitation. 

Solution: Divide the rope into small pieces of length Δr , each of mass Δm = (m / L)Δr . 
Consider the piece located a distance r from the shaft (Figure 9.10). 

Figure 9.10 Small slice of rotating rope 

The radial component of the force on that piece is the difference between the tensions 
evaluated at the sides of the piece, Fr = T (r + Δr) − T (r) , (Figure 9.11). 

Figure 9.11 Free-body force diagram on small slice of rope 

The piece is accelerating inward with a radial component ar = −rω 2 . Thus Newton’s 
Second Law becomes 

F = −Δmω 2r r (9.3.9) 
T (r + Δr) − T (r) = −(m / L)Δr rω 2 . 

Denote the difference in the tension by ΔT = T (r + Δr) − T (r) . After dividing through by 
Δr , Eq. (9.3.9) becomes 
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ΔT 
= −(m / L) rω 2 . (9.3.10) 

Δr 

In the limit as Δr → 0 , Eq. (9.3.10) becomes a differential equation, 

dT 
= −(m / L)ω 2r . (9.3.11) 

dr 

From this, we see immediately that the tension decreases with increasing radius. We 
shall solve this equation by integration 

r ′= r 

T (r) − T (L) = ∫ 
dT dr′ = −(mω 2 / L)∫

r
r′ dr′ 

dr′ L 
r ′= L 

= −(mω 2 / 2L)(r 2 − L2 ) (9.3.12) 
= (mω 2 / 2L)(L2 − r 2 ). 

We use the fact that the tension, in the ideal case, will vanish at the end of the rope, 
r = L . Thus, 

T (r) = (mω 2 / 2L)(L2 − r 2 ). (9.3.13) 

This last expression shows the expected functional form, in that the tension is largest 
closest to the shaft, and vanishes at the end of the rope. 

Example 9.5 Object Sliding in a Circular Orbit on the Inside of a Cone 

Consider an object of mass m that slides without friction on the inside of a cone moving 
in a circular orbit with constant speed v0 . The cone makes an angle θ with respect to a 
vertical axis. The axis of the cone is vertical and gravity is directed downwards. The apex 
half-angle of the cone is θ as shown in Figure 9.12. Find the radius of the circular path 
and the time it takes to complete one circular orbit in terms of the given quantities and g . 

Figure 9.12 Object in a circular orbit on inside of a cone 
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Solution: Choose cylindrical coordinates as shown in the above figure. Choose unit 
vectors r̂ pointing in the radial outward direction and k̂ pointing upwards. The force 
diagram on the object is shown in Figure 9.13. 

Figure 9.13 Free-body force diagram on object 

The two forces acting on the object are the normal force of the wall on the object and the 
gravitational force. Then Newton’s Second Law in the r̂ -direction becomes 

−mv2 

−N cosθ = 
r 

and in the k̂ -direction becomes 
N sinθ − m g = 0 . 

These equations can be re-expressed as 

2vN cosθ = m 
r 

N sinθ = mg . 
We can divide these two equations, 

N sinθ m g 
= 

N cosθ mv2 / r 
yielding 

r g 
tanθ = 2 . 

v 
This can be solved for the radius, 

r = 
v2 

tanθ . 
g 

The centripetal force in this problem is the vector component of the contact force that is 
pointing radially inwards, 

Fcent = N cosθ = mg cotθ , 
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where N sinθ = mg has been used to eliminate N in terms of m , g and θ . The radius 
is independent of the mass because the component of the normal force in the vertical 
direction must balance the gravitational force, and so the normal force is proportional to 
the mass. 

Example 9.6 Coin on a Rotating Turntable 

A coin of mass m (which you may treat as a point object) lies on a turntable, exactly at 
the rim, a distance R from the center. The turntable turns at constant angular speed ω 
and the coin rides without slipping. Suppose the coefficient of static friction between the 
turntable and the coin is given by µ . Let g be the gravitational constant. What is the 
maximum angular speed ωmax such that the coin does not slip? 

Figure 9.14 Coin on Rotating Turntable 

Solution: The coin undergoes circular motion at constant speed so it is accelerating 
inward. The force inward is static friction and at the just slipping point it has reached its 
maximum value. We can use Newton’s Second Law to find the maximum angular speed 
ωmax . We choose a polar coordinate system and the free-body force diagram is shown in 
the figure below. 

Figure 9.15 Free-body force diagram on coin 

The contact force is given by  
C = N + f = N k̂ − f r̂ . (9.3.14) s s 

The gravitational force is given by  
F grav = −mgk̂ . (9.3.15) 

Newton’s Second Law in the radial direction is given by 
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− f s = −m Rω 2 . (9.3.16) 

Newton’s Second Law, Fz = ma z , in the z-direction, noting that the disc is static hence 
a z = 0 , is given by 

N − mg = 0 . (9.3.17) 
Thus the normal force is 

N = mg . (9.3.18) 

As ω increases, the static friction increases in magnitude until at ω = ωmax and static 
friction reaches its maximum value (noting Eq. (9.3.18)). 

( f ) = µN = µmg . (9.3.19) s max 

At this value the disc slips. Thus substituting this value for the maximum static friction 
into Eq. (9.3.16) yields 

2µmg = mRωmax . (9.3.20) 

We can now solve Eq. (9.3.20) for maximum angular speed ωmax such that the coin does 
not slip 

g 
R 

µω . (9.3.21) = max 
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Appendix 9A The Gravitational Field of a Spherical Shell of 
Matter 

When analyzing gravitational interactions between uniform spherical bodies we assumed 
we could treat each sphere as a point-like mass located at the center of the sphere and 
then use the Universal Law of Gravitation to determine the force between the two point-
like objects. We shall now justify that assumption. For simplicity we only need to 
consider the interaction between a spherical object and a point-like mass. We would like 
to determine the gravitational force on the point-like object of mass m1 due to the 
gravitational interaction with a solid uniform sphere of mass m2 and radius R . In order 
to determine the force law we shall first consider the interaction between the point-like 
object and a uniform spherical shell of mass ms and radius R . We will show that: 

1) The gravitational force acting on a point-like object of mass m1 located a distance 
r > R from the center of a uniform spherical shell of mass ms and radius R is the 
same force that would arise if all the mass of the shell were placed at the center of 
the shell. 

2) The gravitational force on an object of mass m1 placed inside a spherical shell of 
matter is zero. 

The force law summarizes these results: 

⎧
⎪
⎨ 

msm1 

F 
 

s,1 (r) = 
−G r̂, r > R2r , 

⎪⎩ 0, r < R 

where r̂ is the unit vector located at the position of the object and pointing radially away 
from the center of the shell. 

For a uniform spherical distribution of matter, we can divide the sphere into thin shells. 
Then the force between the point-like object and each shell is the same as if all the mass 
of the shell were placed at the center of the shell. Then we add up all the contributions of 
the shells (integration), the spherical distribution can be treated as point-like object 
located at the center of the sphere justifying our assumption. 

Thus it suffices to analyze the case of the spherical shell. We shall first divide the shell 
into small area elements and calculate the gravitational force on the point-like object due 
to one element of the shell and then add the forces due to all these elements via 
integration. 

9-17 



  

          
               

     
 

 
 

     
 

  
 

 
 

   
 

            
 

 

 

  

  

We begin by choosing a coordinate system. Choose our z -axis to be directed from the 
center of the sphere to the position of the object, at position r = z k̂ , so that z ≥ 0 . 

(Figure 9A.1 shows the object lying outside the shell with z > R ). 

Figure 9A.1 Object lying outside shell with z > R . 

Choose spherical coordinates as shown in Figure 9A.2. 

Figure 9A.2 Spherical coordinates 

For a point on the surface of a sphere of radius r = R , the Cartesian coordinates are 
related to the spherical coordinates by 

x = Rsinθ cosφ, 
y = Rsinθ sinφ, (9.A.1) 
z = Rcosθ , 
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where 0 ≤θ ≤π and 0 ≤φ ≤ 2π . 

Note that the angle θ in Figure 9A.2 and Equations (9.A.1) is not the same as that in 
plane polar coordinates or cylindrical coordinates. The angle θ is known as the co-
latitude, the complement of the latitude. We now choose a small area element shown in 
Figure 9A.3. 

Figure 9A.3 Infinitesimal area element 

The infinitesimal area element on the surface of the shell is given by 

da = R2 sinθdθdφ . 

Then the mass dm contained in that element is 

dm = σ da = σ R2 sinθ dθ dφ . 

where σ is the surface mass density given by 

σ = ms / 4π R2 . 

 
The gravitational force on the object of mass m1 that lies outside the shell due to Fdm, m1 

the infinitesimal piece of the shell (with mass dm ) is shown in Figure 9A.4. 

9-19 



  

 
 

  
 

             

               
       
             

          
            

            
            

     
 

 
 

   
 

Figure 9A.4 Force on a point-like object due to piece of shell 

The contribution from the piece with mass dm to the gravitational force on the object of 
mass m1 that lies outside the shell has a component pointing in the negative k̂ -direction 
and a component pointing radially away from the z -axis. By symmetry there is another 
mass element with the same differential mass dm′ = dm on the other side of the shell 
with same co-latitude θ but with φ replaced by φ ±π ; this replacement changes the sign 
of x and y in Equations (9.A.1) but leaves z unchanged. This other mass element 
produces a gravitational force that exactly cancels the radial component of the force 
pointing away from the z -axis. Therefore the sum of the forces of these differential mass 
elements on the object has only a component in the negative k̂ -direction (Figure 9A.5) 

Figure 9A.5 Symmetric cancellation of components of force 
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Therefore we need only the z -component vector of the force due to the piece of the shell 
on the point-like object. 

Figure 9A.6 Geometry for calculating the force due to piece of shell. 

From the geometry of the set-up (Figure 9A.6) we see that 


F(d s,1 ) 

m1dm
k̂ = −G cosαk̂ .≡ dF 

2z z r s1 

Thus 
m1dm Gm sm1 cosα sinθdθdφdF = −G cosα = − . (9.A.2) z 2 2r 4π r s1 s1 

The integral of the force over the surface is then 

θ =π φ = 2π θ =π φ =2πdmcosα Gm m cosα sinθdθdφF = −Gm = − s 1 . (9.A.3) z 1 ∫ ∫ 2 ∫ ∫ 2r 4π rθ =0 φ =0 s1 θ =0 φ =0 s1 

The φ -integral is straightforward yielding 

θ=πGm 
rs 

cosα sinθdθ 

1 

m1 

2 θ 
∫ 
=0 

Fz = − . (9.A.4) s 
2 

From Figure 9A.6 we can use the law of cosines in two different ways 
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rs 
2
1 = R2 + z2 − 2 R z cosθ 

(9.A.5) 
R2 = z2 + r 2 − 2r z cosα. s1 s,1 

Differentiating the first expression in (9.A.5), with R and z constant yields, 

2r dr = 2 R z sinθ dθ . (9.A.6) s,1 s,1 

Hence 
r 

sinθ dθ = s,1 dr (9.A.7) s,1 .R z 

and from the second expression in (9.A.5) we have that 

cosα = 
1 ⎡⎣(z2 − R2 ) + r 2 ⎤⎦ . (9.A.8) 

2 zr s1 
s,1 

We now have everything we need in terms of rs,1 . 

For the case when z > R , rs,1 varies from z − R to z + R . Substituting Equations (9.A.7) 
and (9.A.8) into Eq. (9.A.3) and using the limits for the definite integral yields 

Gm sm1 
θ =π cosα sinθFz = − 2 dθ∫2 rθ =0 s,1 

Gm m1 1 z+R 1 1 r dr 
s 2 ⎤ s,1 s,1 = − ⎡(z2 − R2 ) + r (9.A.9) 

2 2 z ∫z− R r ⎣ s,1 ⎦ r 2 R z s,1 s,1 

Gm m1 1 ⎡ z+ R drs,1 z+ R ⎤ 
s 2 − R2= − ⎢(z ) ∫ 2 + ∫ dr ⎥. s,1 2 2 R z2 

⎢ z− R r s,1 
z−R ⎥⎣ ⎦ 

No tables should be needed for these; the result is 

Gm ⎡ (z2 − R2 ) ⎤
z+R 

1sm1F = − ⎢− + r ⎥ 
z s,1 2 2 R z2 ⎢ r ⎥⎣ s,1 ⎦z−R 

sm1= − 
Gm 1 ⎡⎣−(z − R) + (z + R) + 2 R⎤⎦ (9.A.10) 

2 2 R z2 

Gm sm1= − 2 . 
z 
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For the case when z < R , rs,1 varies from R − z to R + z . Then the integral is 

Gm sm1 1 ⎡ (z2 − R2 ) ⎤
R+z 

F = − ⎢− + r ⎥ 
z s,1 2 2 R z2 r⎢ s,1 ⎥⎣ ⎦R−z 

Gm 
= − sm1 1 ⎡⎣−(z − R) − (z + R) + 2 z⎤⎦ (9.A.11) 

2 2 R z2 

= 0. 

So we have demonstrated the proposition that for a point-like object located on the z -
axis a distance z from the center of a spherical shell, the gravitational force on the point 
like object is given by 

⎧
⎪
⎨s,1 


F (r) = 

−G 
m m1s k̂, 

z
0 

z > R2 . 
⎪⎩ , z < R 

This proves the result that the gravitational force inside the shell is zero and the 
gravitational force outside the shell is equivalent to putting all the mass at the center of 
the shell. 
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