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1a) Yes, the scale does change its reading when the person is in the air inside the box. 
The person, in free fall, exerts no forces on the floor or the walls of the box. This 
contrasts with the situation when the person is standing on the floor of the box. The floor 
of the box transmits the downward force from the weight of the person to the scale and 
this is balanced by an upward force from the scale in response. 

1b) No, there is no difference in the reading on the scale depending on whether or not the 
hummingbird is resting on the floor of the box or hovering within the box. In both cases, 
the weight of the hummingbird is supported by the box which transmits the force of this 
weight to the scale. When the hummingbird is hovering, the force of its weight is 
countered by the force of air pressure underneath its wings. This air presses down on the 
box in a fashion that transmits the force of the weight of the hummingbird to the box. 

2) First, find the time that the football stays in the air. Do this by determining when the y 
position of the football is zero. The initial velocity of the football in the y direction is 
v0 sinθ . 

2y = 0 = (v sinθ ) ⋅ t − 1 
gto 2 

Solving this, we find that the find that the football stays in the air for a time given by: 

2v0 sin θ 
t = . 

g 

The x velocity of the football remains unchanged at v0 cosθ , so during the time that the 

football is in the air, it travels a distance: 
2v0 sin θ cosθ v0 2 sin θ

x = or, simplifying this formula: x = . 
g g 

On the first kick, the ball travels a known distance x1 = 
v0 2 sin θ1 . On the second kick, it 

g 

v0 2 sin θ 2travels an unknown distance x2 = . In each case, v0 is the same value. To find 
g 

x2 , we simply divide the second equation by the first equation and then multiply by x1 . 
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2 sin θ 2This gives: = x1 . We know all the quantities on the right hand side of this x2 2 sin θ1 

equation. Plugging in the numbers, we find that x2 =69.2 yards. 

3a) At small times we can expand the exponent in a Taylor series. The first four terms of 

this series are: 1 − 
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RC 

t << ,1 and we 

can safely ignore all but the first two terms. 

t · Therefore at small times, equation )1) becomes: Vcap ( ) ≈V ¨
§ − ¸ . Flipping this t cell 
© RC ¹ 

around, we find that t ≈ RC
V ( ) .t 

Vcell 
cap 

t
3b) For this, we need = 2.0 . Plugging in the numbers gives t= 4 seconds. 

RC 

3c) Using the equation t ≈ RC
V ( ) , we can determine the times for falling each of the t 

Vcell 
cap 

distances. The formula y = 1 
gt 2 tells us that if we plot the distance of each fall as a 

2 
1

function square of the time for the fall, the slope on the plot will be g. For the three 
2 

distances, we find squared times of 0.0524 sec2, 0.0267 sec2, and 0.0139 sec2 for the three 
heights. Plotting these points and fitting the best straight line through these points (the 
line must also go through zero, because we expect that for zero height it takes zero time 
to fall!), we get the plot below. 

falling heights vs. time squared 
The slope of the line drawn is 
about 0.495 meters/second2. Our  0.3 

measured value for g is 9.81 m/s2. 
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