Massachusetts Institute of Technology
 Physics Department

Physics 8.01x
Fall term 2002

Solutions to Problem Set\# 11

Problem 1) Y\&F 9-66, p291

The equation for moment of inertial is an integral over the volume, and if the axis is along z-axis, it is

$$
I=\int_{v o l} \rho(x, y, z)\left(x^{2}+y^{2}\right) d V \quad(d V=d x d y d z)
$$

If we are comparing I of objects of the same mass but different spatial distribution of the mass, the problem becomes, what is the "average" distance of the material to the axis(if \hat{z} is the axis, the distance is $\sqrt{x^{2}+y^{2}}$ of course). This can be done by comparing the cross section shown in figure 9-23.
a) The object with the smallest I must be "compact" so that the material is relatively close to the ration axis. Obviously B's cross section is the least "compact"; out of A and C, because we can put a circle of radius R inside a square of dimention $2 \mathrm{R} \times 2 \mathrm{R}, \mathrm{A}$ is more "compact" than C . So A has the smallest I .
b) As stated in a) B is the least "compact", and hence has the largest moment of inertia. $I_{A}<I_{C}<I_{B}$
c) We can put the solid sphere into A, and A into C. Because B is hollow, it is still the least "compact". Therefore the "compactness" is in the order sphere $>A>C>B$, and the order of moment of inertial is sphere $<A<C<B$.

Problem 2) Y\&F 9-82, p293

a) The rotational kinetic energy with period T and moment of inertia I, and rate of energy loss is

$$
\begin{aligned}
\omega & =\frac{2 \pi}{T} \Longrightarrow K E_{r}=\frac{1}{2} I \omega^{2}=\frac{1}{2} I\left(\frac{2 \pi}{T}\right)^{2} \\
\frac{d}{d t} K E_{r} & =\frac{d}{d t}\left[\frac{1}{2} I\left(\frac{2 \pi}{T}\right)^{2}\right]=-I \frac{(2 \pi)^{2}}{T^{3}} \frac{d T}{d t}
\end{aligned}
$$

From the conditions in the problem $d T / d t=4.22 \times 10^{-13} s / s$ we have

$$
\frac{d}{d t} K E_{r}=-5 \times 10^{31} W=-I \frac{(2 \pi)^{2}}{T^{3}} \frac{d T}{d t} \Longrightarrow I=1.09 \times 10^{38} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

b) Moment of inertial for a solid uniform sphere is $I=\frac{2}{5} M r^{2}$, where M is total mass and r the radius. From a) we have

$$
r=\left(\frac{5}{2} I / M\right)^{1 / 2}=9882 m
$$

c) We already know the angular frequency of the neutron star $\omega=2 \pi / T$, so the linear speed is, with r from b)

$$
v=\omega r=1.88 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

d)

$$
\begin{aligned}
\rho & =M /\left(4 \pi / 3 r^{3}\right)=1.4 M_{\text {sun }} /\left(4 \pi / 3 r^{3}\right)=6.89 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3} \\
\frac{\rho}{\rho_{\text {rock }}} & \approx 10^{14}, \quad \frac{\rho}{\rho_{\text {nucl }}} \approx 7
\end{aligned}
$$

so the density of the neutron star is orders greater than that of rock, but of the same order that of an atomic nucleus. This means a neutron star is essentially a large atomic nucleus.

Problem 3) Y\&F 10-30, p322

a) A point-like mass in circular motion has angular momentum

$$
L=|r \times p|=m v r=2.67 \times 10^{40} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
$$

where r is the orbital radius and v the orbital speed.
b) The angular momentum of a uniform solid sphere due to self-rotation, in analogy to $p=m v$, is

$$
L=I \omega=\frac{2}{5} m r_{E}^{2} \frac{2 \pi}{T}=7.07 \times 10^{33} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
$$

where r_{E} is the radius of the earth, and the period T is one day.

Problem 4) Y\&F 10-33, p322

a) Angular momentum will change when and only when there is net torque applied to the object. In this problem the table's normal force and gravity cancel out; the string's tension force goes through the center of the circle $(\vec{r} / / \vec{T})$ so its torque $\vec{\tau}=\vec{r} \times \vec{T}=0$. Angular momentum is therefore conserved.
b) Initial equals final angular momentum:

$$
L_{i}=m \omega_{i} r^{2}=L_{f}=m \omega_{f}(r-\Delta r)^{2} \Longrightarrow \omega_{f}=\omega_{i}\left(\frac{r}{r-\Delta r}\right)^{2}=7 \mathrm{rad} / \mathrm{s}
$$

c)

$$
\Delta K E=\frac{1}{2} m(r-\Delta r)^{2} \omega_{f}^{2}-\frac{1}{2} m r^{2} \omega_{i}^{2}=0.0103 J
$$

d) By the work-kinetic-energy theorem the work done by the cord is

$$
W=\Delta K E=0.0103 J
$$

