
� 

Scott Hughes 21 March 2004


Massachusetts Institute of Technology 
Department of Physics 

8.022 Spring 2004 

Supplementary notes: 
Complex numbers 

A.1 Introduction & Rant 

Complex numbers are numbers that consist of a real and an imaginary part. As we will 
hopefully come to realize very soon, complex numbers are one of the most fantastically 
useful mathematical concepts that have been devised. 

Sadly, they are encumbered by some rather unfortunate terminology. In particular, there 
is nothing imaginary about imaginary numbers!!! We (hopefully) all know that the imaginary 
number i is defined by 

i2 −1= 

i.e., 

i = 
�
−1 . 

People are often taught that this is an “imaginary” number because we can’t visualize 
or conceptualize what the square root of a negative number “really” is. This is absolute 
garbage. The only thing that is “imaginary” about “imaginary numbers” is that it took an 
act of imagination to conceive of them in the first place. This is hardly unprecedented: it 
took an act of imagination to conceive of negative numbers (“How can someone have negative 
six rocks?”), or irrational numbers. In a manner similar to negative numbers or irrational 
numbers, imaginary numbers weren’t invented in some fit of self-perpetuating mathematical 
foolishness — they are a useful, meaningful concept that allow us to greatly extend the scope 
of problems that can be solved mathematically. As a particular example that we will soon 
see demonstrates, they make solving second order differential equations a breeze. 

End rant. 

A.2 Complex numbers: definitions and representation 

As mentioned above, complex numbers are numbers with both a real and an imaginary part. 
They thus have the form 

z = x + iy 

where, of course, i = 
�
−1. A useful auxiliary concept is the “complex conjugate” of a 

complex number: the complex conjugate of a complex number z is given by 

z = x − iy . 

In other words, it has the same real part but the imaginary part has the opposite sign. We’ll 
come back to the complex conjugate shortly. 



� 

This way of writing complex numbers suggests a nice way to represent them: we think 
of z = x + iy as a coordinate in the (x, y) plane: 

y 

z = x + i y 

x 

This is called the “complex plane” representation. Any complex number is given by a point 
in this plane. Using simple trigonometry, this point can be written in terms of a “magnitude” 
|z| = r = 

�
x2 + y2 and an angle or “phase” ω = arctan(y/x): 

y 

x 

r 
θ 

z = r cos( ) + i r sin( ) .θθ 

In what follows, we will find this second representation to be particularly useful. 

A.3 Euler’s relation 

One of the main reasons that complex numbers are so useful in physics is the following 
amazing relationship: 

iω e = cos ω + i sin ω . 

A simple way to prove this is to expand the exponential in a Maclaurin series: 

1 1iω e = 1 + (iω) + (iω)2 + (iω)3 + . . . 
2 6 

� (iω)n 

= . 
n! n=0 
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Now, we reorganize this formula. To do so, note the following powers of i: 

i0 = 1 

i1 = i 

i2 −1= 

i3 −i= 

i4 = 1 

i5 = i etc. 

Then, 

� (iω)n 
iω e = 

n! n=0 
� � ω2n+1 
� ω2n 

� 
= (−1)n + i (−1)n 

(2n)! (2n + 1)! n=0	 n=0 

=	 cos ω + i sin ω . 

The second line follows from carefully reorganizing the Maclaurin expansion of the exponen
tial, recognizing that the odd power terms contain an overall factor of i, the even terms do 
not. The third line follows from recognizing that the two sums following this reorganization 
are just the Maclaurin expansions of the sine and cosine. 

Notice that the complex conjugate of z is likewise simple: 

z = x − iy 
−iω = re . 

A.4 Using the Euler relation 

The Euler relation is fantastic. First, it tells us that the polar coordinate representation of 
a complex number is very simple: 

z	 = x + iy 

= r cos ω + ir sin ω 
iω =	 re . 

This leads to the “phasor” representation of complex numbers: essentially, the complex 
number is represented as a displacement vector from the origin — the “phasor” — to the 
point (x, y) in the plane. The length of this phasor is r; ω is the angle from the x axis to the 
phasor. 

Let’s look at a couple of particularly important complex numbers. In all cases, we put 
r = 1. Imagine we increase ω from 0 — the phasor on the x-axis — to 2γ, in steps of γ/2: 

ω = 0 
γ 

� z = 1 

ω =
2 

� z = eiγ/2 = i 

ω = γ z = e iγ = −1 
3γ 

ω = z = e 3iγ/2 = −i 
2 

� 

ω = 2γ � z = e 2iγ = 1 . 
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An interesting and important phasor is one in which the angle grows with time: 

z(t) = re i�t . 

Assume for now that � is a purely real number. In the complex plane, this phasor looks like 
a vector of length r sweeping around counterclockwise at constant angular velocity �; the 
phasor traces out a circle in the complex plane. Its complex conjugate, 

z (t) = re −i�t , 

looks like a vector of length r sweeping around clockwise with constant angular velocity �. 
What if � is itself complex? Suppose we have 

� = �r + i�i . 

Then, 

i�r t−�it z(t) = re	i�t = re 
−�it i�r t = re e . 

This is again a vector sweeping around counterclockwise, with angular velocity �r . In this 
case, though, the length of the vector is exponentially decaying; the phasor traces out a 
spiral in the complex plane, asymptoting to the origin. For the complex conjugate, we have 

�	 −i�r t−�it z (t) = re	−i��t = re 
−�it −i�r t = re e . 

This is a decaying vector sweeping around clockwise. 

A.5 Solving the harmonic oscillator 

A harmonic oscillator is governed by the equation 

ma = −kx 

where a is acceleration. This provides us with the differential equation 

d2x k 
+ x = 0 . 

dt2 m 

We know (hopefully) that the solution to this equation can be written as sines and cosines: 

x(t) = A cos(�0t) + B sin(�0t) 

where �0 = k/m, and the constants A and B are chosen to match initial conditions. For 
example if x(0) = x0 and v(0) = (dx/dt) t=0 = 0, then |

A = x0, B = 0 . 

An equivalent way to write this solution is to put 

x = A cos(�0t + �0) 
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and match initial conditions by adjusting the constants A and �0. With the initial conditions 
chosen above, we would put A = x0 and �0 = 0. 

There is yet a third way to write our solution: we put 

˜x(t) = Re [x(t)] 

where Re[z] means “the real part of z”, and we put 

x̃(t) = Aei(�0t+�0) . 

The reason that this method works so well is that x̃(t) also solves the differential equation: 

d2 ̃x k 
+ x = 0 ˜

dt2 m 

as long as we have �0 = k/m, exactly as before. This is easy to see: 

dx̃ 
= i�0Aei(�0t+�0) 

dt 
= i�0 ̃x 

d2 ̃x 
= −�2Aei(�0t+�0) 

dt2 0 

˜= −�2 x . 0 

Each time we take a derivative, we just pull down a factor of i�0. Plugging into the differential 
equation shows us that �0 = k/m. We can then solve for initial conditions by choosing 
the constants A and �0. Once we have determined x̃(t), we get x(t) by just taking the real 
part. 

Using complex numbers in this case is overkill. We now look at an example where it’s 
more appropriate. 

A.6 Solving the damped harmonic oscillator 

The damped harmonic oscillator is governed by the differential equation 

d2x dx k 
+ � + x = 0 

dt2 dt m 

where the constant � tells us about drag forces that are proportional to the speed of the 
mass. 

Solving this equation is kind of messy — as you hopefully learned in 8.012, you make 
some assumption about the form of the solution, plug that assumption in, grind through 
some hideous calculation, and end up with a damped sinusoidal oscillation. 

All of that hideous calculation can be done with just a few lines of algebra using complex 
numbers. We proceed in exactly the same way as we did with the harmonic oscillator: we 

x(t)], that ˜ x(t) works in the damped assume that x(t) = Re[˜ x(t) = Aei(φt+�0), and that ˜
oscillator equation. (I use φ rather than �0 in the exponential because I don’t want to 
assume ab initio that I will get some particular frequency — I want the math to show me 
what frequency is needed.) We need to use the facts that 

dx̃ 
= iφ Aei(φt+�0) 

dt 
= iφ x̃(t) 
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� 

� � 

� 

� = . 

� 

and 

d2 ̃x 
= −φ2 Aei(φt+�0) 

dt2 

= −φ2 x̃(t) . 

Each derivative brings down a power of iφ. When we plug these into the differential equation, 
we thus just pull out an overall factor of x̃: 

x d˜d2 ̃ x k 
˜+ � + x = 0 

dt2 dt m 

becomes 

k 
x̃(t) −φ2 + i�φ + = 0 

m 

which means that 

k −φ2 + imφ + = 0 . 
m 

This is a simple quadratic equation; its solution is 

� k �2 

φ = i . 
2 
± 

m 
− 

4 

Notice what we get when we evaluate eiφt: 

k �2 
−�t/2 − t 

e iφt = e e 
±i 

m 4 

−�t/2 ±i�t = e e . 

To keep the notation simple, I’ve defined 

k �2 

. 
m 

− 
4 

The ± up in the exponential means that either the plus or the minus solution is valid. Indeed, 
since the real part of ei�t is identical to the real part of e−i�t , there’s no useful distinction 
between the two solutions. We might as well just pick one and stick with it. 

It is thus simple to make the final solution for the damped harmonic oscillator: 

˜ e i(�t+�0 )x(t) = Ae−�t/2 

so that x(t) = Re[x̃(t)] is given by 

x(t) = Ae−�t/2 cos (�t + �0) 

k �2 

m 
− 

4 

The constants A and �0 are then set by initial conditions. 
I know of no method to solve this equation that is simpler than this complex number 

technique. It may seem a bit odd to introduce complex numbers to describe totally real 
phenomena. However, the complex numbers simplify the solution of the differential equations 
so much that it is absolutely worth using them as much as possible. 


