Massachusetts Institute of Technology
 Department of Physics
 Physics 8.022 - Fall 2003
 Useful Formulae

Conservative Field: $\int_{C} \vec{F} \cdot d \vec{r}=0$ for any closed path $C, W_{a b, C}=W_{a b, C^{\prime}}$ for any C, C^{\prime} connecting a and $b, \vec{F}=-\vec{\nabla} U, \vec{\nabla} \times \vec{F}=0$

Coulomb Law: $\vec{F}_{21}=\frac{q_{1} q_{2}}{r^{2}} \hat{r}_{21}$ for two point charges at distance r. $\vec{F}_{12}=-\vec{F}_{21}$, and for charges $d q_{1}$ and $d q_{2}$ that make part of continuous charge distributions 1 and 2 , $d \vec{F}_{21}=\frac{d q_{1} d q_{2}}{r^{2}} \hat{r}_{21}$

Electric Field: at point 2 due to $q_{1} \vec{E}_{1}=\frac{q_{1}}{r^{2}} \hat{r}_{21}$. If q_{1} is not a point charge but part of a continuous distribution, $d \vec{E}=\frac{d q}{r^{2}} \hat{r}$

Principle of Superposition: Two or more electric fields acting at a given point P add vectorially: $\vec{E}_{P}=\vec{E}_{1}+\vec{E}_{2}+\ldots+\vec{E}_{n}$

Electrostatic Field is Conservative: $\vec{\nabla} \times \vec{E}=0$ and thus there exists scalar function ϕ such that $\vec{E}=-\vec{\nabla} \phi$ where $d \phi=\frac{d q}{r}$

Electrostatic potential: The potential at \vec{x} with respect to a ref point is
$\phi(\vec{x})-\phi(r e f)=-\int_{\text {ref }}^{\vec{x}} \vec{E} \cdot d \vec{r}=-\frac{W_{r e f \rightarrow \vec{x}}}{q}$
Gauss Law: $\int_{S} \vec{E} \cdot d \vec{a}=4 \pi \int_{V} \rho d V$ where S is a closed surface and V is its corresponding volume (integral form) or $\vec{\nabla} \cdot \vec{E}=4 \pi \rho$ (differential form).
$\underline{\text { Poisson Eqn: }} \nabla^{2} \phi=-4 \pi \rho$, Laplace Eqn: $\nabla^{2} \phi=0$
$\underline{\text { Energy: }} U=\frac{1}{2} \int_{V} d V \int_{V^{\prime}} d V^{\prime} \frac{\rho(\vec{x}) \rho\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|}=\frac{1}{2} \int_{V} \rho \phi d V=\frac{1}{8 \pi} \int_{V} E^{2} d V$
$\underline{\text { Electric Force on Conductors: }} \frac{d F}{d a}=2 \pi \sigma^{2}=\frac{E^{2}}{8 \pi}$
Current Density: $\vec{J}(\vec{x})=\rho(\vec{x}) \vec{v}(\vec{x})$, Conservation Law/Continuity: $\vec{\nabla} \cdot \vec{J}=-\frac{\partial \rho}{\partial t}$
Currents: $I=\frac{d q}{d t}, I=\int_{S} \vec{J} \cdot d \vec{a}$
Capacitance: $Q=C V$, (energy) $U=\frac{1}{2} C V^{2}$
$\underline{\text { Capacitor networks: Parallel: } C=C_{1}+C_{2} \text {, series: } \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}, \underline{x}}$
Ohm's Law: $\vec{J}=\sigma \vec{E}, V=I R$
$\underline{\text { Resistor networks: }}$ Series: $R=R_{1}+R_{2}$, parallel: $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
Magnetic charges: $\vec{\nabla} \cdot \vec{B}=0$
Biot-Savart's Law: $d \vec{B}=\frac{I d \vec{l} \times \hat{r}}{c r^{2}}$
Lorentz Force: $\vec{F}=q \vec{E}+\frac{q}{c} \vec{v} \times \vec{B}$
Force on current: $\vec{F}=\frac{I}{c} d \vec{l} \times \vec{B}$

Ampere's Law: $\oint_{C} \vec{B} \cdot d \vec{l}=\frac{4 \pi}{c} I_{\text {encl }}=\frac{4 \pi}{c} \int_{S} \vec{J} \cdot d \vec{a}, \vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J}$

Relativistic Transformations:

All primed quantities measured in the frame F^{\prime} which is moving in the positive x direction with velocity $u=\beta c$ (and $\gamma=1 / \sqrt{1-\beta^{2}}$) as seen from F.
Position and momentum 4 -vectors:

$$
\begin{array}{lr}
x^{\prime}=\gamma(x-\beta c t) \quad p^{\prime}=\gamma\left(p-\beta \frac{E}{c}\right) \\
t^{\prime}=\gamma\left(t-\beta \frac{x}{c}\right) \quad E^{\prime}=\gamma(E-\beta c p)
\end{array}
$$

Electric and magnetic field components:

$$
\begin{array}{lll}
E_{x}^{\prime}=E_{x} & E_{y}^{\prime}=\gamma\left(E_{y}-\beta B_{z}\right) & E_{z}^{\prime}=\gamma\left(E_{z}+\beta B_{y}\right) \\
B_{x}^{\prime}=B_{x} & B_{y}^{\prime}=\gamma\left(B_{y}+\beta E_{z}\right) & B_{z}^{\prime}=\gamma\left(B_{z}-\beta E_{y}\right)
\end{array}
$$

$\underline{\text { Relativistic Mass, Energy: }} m=\gamma m_{0}, E=m c^{2}$
Faraday's Law: $\mathcal{E}=\oint_{C} \vec{E} \cdot d \vec{l}=-\frac{1}{c} \frac{d \Phi}{d t}, \vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
Mutual Inductance: $M_{12}=M_{21}=\frac{\Phi_{21}}{c I_{1}}, \mathcal{E}_{21}=-M_{21} \frac{d I_{1}}{d t}$
$\underline{\text { Self Inductance: }} L=\frac{\Phi}{c I}, \mathcal{E}=-L \frac{d I}{d t}$
$\underline{\text { Magnetic Field Energy Density: }} \frac{d U_{B}}{d v}=u_{B}=\frac{B^{2}}{8 \pi}$
Impedance: $V=Z I, Z_{R}=R, Z_{C}=-\frac{i}{\omega C}, Z_{L}=i \omega L$
Admittance: $Y=1 / Z$
$\underline{\text { Complex notation: }} e^{i \theta}=\cos \theta+i \sin \theta, z=\alpha+i b=|z| e^{i \theta},|z|=\sqrt{\alpha^{2}+b^{2}}, \tan \theta=b / \alpha$

Maxwell's equations: $\vec{\nabla} \cdot \vec{E}=4 \pi \rho, \vec{\nabla} \cdot \vec{B}=0, \vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}, \vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}$
Electromagnetic waves: $\vec{E}=\vec{E}_{0} f(\vec{k} \vec{r}-\omega t), \vec{B}=\vec{B}_{0} f(\vec{k} \vec{r}-\omega t),|\vec{E}|=|\vec{B}|, k=2 \pi / \lambda$,

Wave "mechanics": Poynting vector $\vec{S}=\frac{c}{4 \pi} \vec{E} \times \vec{B}$, momentum density $\vec{g}=\frac{1}{4 \pi c} \vec{E} \times \vec{B}$, energy density $u_{T}=\frac{E^{2}}{8 \pi}+\frac{B^{2}}{8 \pi}$, radiation pressure $\frac{F}{A}=u_{T}$
$\underline{\text { Waveguides: }} \frac{\partial I}{\partial x}=-C_{0} \frac{\partial V}{\partial t}, \frac{\partial V}{\partial x}=-L_{0} \frac{\partial I}{\partial t}, \frac{\partial^{2} I}{\partial x^{2}}-L_{0} C_{0} \frac{\partial^{2} I}{\partial t^{2}}=0, \frac{\partial^{2} V}{\partial x^{2}}-L_{0} C_{0} \frac{\partial^{2} V}{\partial t^{2}}=0$
Gradient: in cartesian $\vec{\nabla} f=\frac{\partial f}{\partial x} \hat{x}+\frac{\partial f}{\partial y} \hat{y}+\frac{\partial f}{\partial z} \hat{z}$, in cylindrical $\vec{\nabla} f=\frac{\partial f}{\partial \rho} \hat{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\phi}+\frac{\partial f}{\partial z} \hat{z}$, in spherical $\vec{\nabla} f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}$
Divergence: in cartesian $\vec{\nabla} \cdot \vec{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}$, in cylindrical $\vec{\nabla} \cdot \vec{F}=\frac{F_{\rho}}{\rho}+\frac{\partial F_{\rho}}{\partial \rho}+$ $\frac{1}{\rho} \frac{\partial F_{\phi}}{\partial \phi}+\frac{\partial F_{z}}{\partial z}$, in spherical $\vec{\nabla} \cdot \vec{F}=\frac{2 F_{r}}{r}+\frac{\partial F_{r}}{\partial r}+\frac{F_{\theta}}{r} \cot \theta+\frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}$

