Massachusetts Institute of Technology
 Department of Physics
 8.022 FALL 2004

Assignment 10: Displacement Current; Electromagnetic Waves
 Due date: Monday, Dec 6th

1. Purcell 9.5: Electromagnetic Waves.
2. Purcell 9.8: Wave in a box.
3. Purcell 9.10: Magnetic field in a capacitor.
4. Purcell 9.13: Relativistic transformation of wave's fields.
5. Displacement Current.

Figure 1: A RC circuit

A capacitor C with circular plates of radius b is charged to a voltage V_{0}. The space between the two plates is small compared to b so that we can safely ignore any fringing effects. At $t=0$ the switch is closed and the capacitor discharges through the resistor R . In all the questions below give your answers in terms of $\mathrm{C}, \mathrm{b}, V_{0}, \mathrm{R}, \mathrm{t}$ and any universal constants.
(a) Give an expression for the charge $Q(t)$ as a function of time of the positively charged plate (upper one in the above figure) of the capacitor.
(b) Find the electric field $\vec{E}(t)$ between the two capacitor plates.
(c) Find the displacement current density $\vec{J}(t)$ between the two capacitor plates.
(d) Find the magnetic field $\vec{B}(t)$ anywhere in between the capacitor plates.
6. Electric and magnetic fields pair.

A pair of electric and magnetic fields is given by $\vec{E}=E_{0} \hat{x} \cos (\alpha y-\gamma z+\delta t)$, and $\vec{B}=B_{0}(\hat{y}+\hat{z}) \cos (\alpha y-\gamma z+\delta t)$, By substituting into all of Maxwell's equations in charge-free and current-free vacuum space derive the conditions that (constants) $\alpha, \gamma, \delta, B_{0}$ and E_{0} have to obey in order the fields to satisfy them. Is this a legitimate electromagnetic wave? Why?
7. An infinite fat wire.

An infinite fat wire, with radius a, carries a constant current I, uniformly distributed over its cross section. A narrow gap in the wire, of width $\omega \ll a$, forms a parallel-plate capacitor, as shown in the figure. Find the magnetic field in the gap, at a distance $s<a$ from the axis.

Figure 2: An infinite fatwire
(last problem on next page!!!)

Problem 8 (review problem in preparation for final)

You come across a spherically symmetric electric field with the following form:

$$
\begin{aligned}
\vec{E}(r) & =E_{0}\left(\frac{r}{R}\right)^{2} \hat{r} \quad 0 \leq r \leq R \\
& =0 \quad R<r \leq 2 R \\
& =E_{0}\left(\frac{r}{R}-2\right) \hat{r} \quad 2 R<r \leq 3 R \\
& =E_{0}\left(\frac{3 R}{r}\right)^{2} \hat{r} \quad 3 R<r \leq 4 R \\
& =0 \quad r>4 R
\end{aligned}
$$

\hat{r} is the radial unit vector in spherical coordinates.
(a) For all r, what is the charge $Q(r)$ contained within a radius r ?
(b) Calculate the charge density $\rho(r)$ everywhere.
(c) Are there any surface charges in this charge distribution? If so, identify their location and give the magnitude of the surface charge density σ at each such location.
(d) The charge distribution is modified in some way. The new electric field is

$$
\begin{aligned}
\vec{E}(r) & =E_{0}\left(\frac{r}{R}\right)^{2} \hat{r} \quad 0 \leq r \leq R \\
& =0 \quad R<r \leq 2 R \\
& =E_{0}\left(\frac{r}{R}-2\right) \hat{r} \quad 2 R<r \leq 3 R \\
& =E_{0}\left(\frac{3 R}{r}\right)^{2} \hat{r} \quad 3 R<r \leq 7 R / 2 \\
& =0 \quad r>7 R / 2
\end{aligned}
$$

Compute the difference in energy between this and the old configuration, $U_{\text {new }}-U_{\text {old }}$. Was work done on the system or did the system do work?

