## Class 05: Outline

## Hour 1:

## Gauss' Law

## Hour 2:

Gauss' Law

## Six PRS Questions On Pace and Preparation

## Last Time: Potential and E Field

## E Field and Potential: Creating



A point charge $q$ creates a field and potential around it:

$$
\overrightarrow{\mathbf{E}}=k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}} ; V=k_{e} \frac{q}{r}
$$

Use superposition for
systems of charges

They are related:

$$
\overrightarrow{\mathbf{E}}=-\nabla V ; \Delta V \equiv V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}
$$

## E Field and Potential: Effects

If you put a charged particle, $q$, in a field:

$$
\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}
$$

To move a charged particle, $q$, in a field:

$$
W=\Delta U=q \Delta V
$$

## Two PRS Questions: Potential \& E Field

## Gauss's Law

## The first Maxwell Equation

A very useful computational technique This is important!

## Gauss's Law - The Idea



The total "flux" of field lines penetrating any of these surfaces is the same and depends only on the amount of charge inside

## Gauss's Law - The Equation

$$
\Phi_{E}=\oiint_{\substack{\text { closed } \\ \text { surfaceS }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{i n}}{\varepsilon_{0}}
$$

Electric flux $\Phi_{E}$ (the surface integral of E over closed surface $S$ ) is proportional to charge inside the volume enclosed by $S$

## Now the Details

## Electric Flux $\Phi_{E}$

Case I: E is constant vector field perpendicular to planar surface $S$ of area $A$


$$
\begin{gathered}
\Phi_{E}=\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
\Phi_{E}=+E A
\end{gathered}
$$

Our Goal: Always reduce problem to this

## Electric Flux $\Phi_{E}$

Case II: E is constant vector field directed at angle $\theta$ to planar surface $S$ of area $A$


$$
\begin{aligned}
\Phi_{E} & =\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
\Phi_{E} & =E A \cos \theta
\end{aligned}
$$

## PRS Question: <br> Flux Thru Sheet

## Gauss's Law

$$
\Phi_{E}=\oiint_{\substack{\text { closed } \\ \text { surfaces }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{i n}}{\varepsilon_{0}}
$$

Note: Integral must be over closed surface

## Open and Closed Surfaces



A rectangle is an open surface - it does NOT contain a volume A sphere is a closed surface - it DOES contain a volume

## Area Element dA: Closed Surface

For closed surface, dA is normal to surface and points outward ( from inside to outside)

$\Phi_{E}>0$ if $E$ points out
$\Phi_{E}<0$ if $E$ points in

## Electric Flux $\Phi_{E}$

Case III: E not constant, surface curved


$$
d \Phi_{E}=\overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
$$

$$
\Phi_{E}=\iint d \Phi_{E}
$$

## Example: Point Charge

 Open Surface

## Example: Point Charge Closed Surface



## PRS Question: <br> Flux Thru Sphere

## Electric Flux: Sphere

## Point charge $\mathbf{Q}$ at center of sphere, radius $r$

## E field at surface:

Gaussian

$$
\overrightarrow{\mathbf{E}}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

Electric flux through sphere:

$$
\begin{aligned}
& \Phi_{E}=\oiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\oiint_{S} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}} \cdot d A \hat{\mathbf{r}} \\
& =\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \oiint_{S} d A=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} 4 \pi r^{2}=\frac{Q}{\varepsilon_{0}}
\end{aligned}
$$

$$
d \overrightarrow{\mathbf{A}}=d A \hat{\mathbf{r}}
$$

## Arbitrary Gaussian Surfaces



$$
\Phi_{E}=\oiint_{\substack{\text { closed } \\ \text { surface S }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q}{\varepsilon_{0}}
$$

For all surfaces such as $S_{1}, S_{2}$ or $S_{3}$

## Applying Gauss's Law

1. Identify regions in which to calculate $E$ field.
2. Choose Gaussian surfaces S : Symmetry
3. Calculate $\Phi_{E}=\oiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}$
4. Calculate $q_{i n}$, charge enclosed by surface $S$
5. Apply Gauss's Law to calculate E:

$$
\Phi_{E}=\oiint_{\substack{\text { closed } \\ \text { surfaceS }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{i n}}{\varepsilon_{0}}
$$

## Choosing Gaussian Surface

Choose surfaces where $\mathbf{E}$ is perpendicular \& constant. Then flux is EA or -EA.

Choose surfaces where $\mathbf{E}$ is parallel.
Then flux is zero

## Example: Uniform Field

Flux is EA on top Flux is -EA on bottom Flux is zero on sides

## Symmetry \& Gaussian Surfaces

Use Gauss's Law to calculate E field from highly symmetric sources

## Symmetry Gaussian Surface

Spherical
Concentric Sphere
Cylindrical
Coaxial Cylinder

Planar
Gaussian "Pillbox"

## PRS Question: Should we use Gauss' Law?

## Gauss: Spherical Symmetry

$+Q$ uniformly distributed throughout non-conducting solid sphere of radius $a$. Find E everywhere


## Gauss: Spherical Symmetry

Symmetry is Spherical

$$
\overrightarrow{\mathbf{E}}=E \hat{\mathbf{r}}
$$

Use Gaussian Spheres


## Gauss: Spherical Symmetry

## Region 1: $r>a$

Draw Gaussian Sphere in Region $1(r>a)$


Note: $r$ is arbitrary but is the radius for which you will calculate the E field!

## Gauss: Spherical Symmetry

Region 1: $r>a$
Total charge enclosed $q_{\text {in }}=+Q$

$$
\begin{aligned}
\Phi_{E} & =\oiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E \oiint_{S} d A=E A \\
& =E\left(4 \pi r^{2}\right)
\end{aligned}
$$

$\Phi_{E}=4 \pi r^{2} E=\frac{q_{i n}}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0}}$

$$
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$



## Gauss: Spherical Symmetry

## Region 2: $r<a$

Total charge enclosed:
$q_{\text {in }}=\left(\frac{\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi a^{3}}\right) Q=\left(\frac{r^{3}}{a^{3}}\right) Q$
OR $q_{i n}=\rho V$

Gauss's law:

$$
\begin{aligned}
& \Phi_{E}=E\left(4 \pi r^{2}\right)=\frac{q_{i n}}{\varepsilon_{0}}=\left(\frac{r^{3}}{a^{3}}\right) \frac{Q}{\varepsilon_{0}} \\
& E=\frac{Q}{4 \pi \varepsilon_{0}} \frac{r}{a^{3}} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{r}{a^{3}} \hat{\mathbf{r}}
\end{aligned}
$$



## PRS Question: Field Inside Spherical Shell

## Gauss: Cylindrical Symmetry

 Infinitely long rod with uniform charge density $\lambda$ Find $\mathbf{E}$ outside the rod.+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 


## Gauss: Cylindrical Symmetry

Symmetry is Cylindrical

$$
\overrightarrow{\mathbf{E}}=E \hat{\mathbf{r}}
$$

Use Gaussian Cylinder
Note: $r$ is arbitrary but is the radius for which you will calculate the E field! $\ell$ is arbitrary and should


## Gauss: Cylindrical Symmetry

Total charge enclosed: $q_{i n}=\lambda \ell$

$$
\begin{aligned}
\Phi_{E} & =\oiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E \oiint_{\mathrm{S}} d A=E A \\
& =E(2 \pi r \ell)=\frac{q_{\text {in }}}{\varepsilon_{0}}=\frac{\lambda \ell}{\varepsilon_{0}} \\
E & =\frac{\lambda}{2 \pi \varepsilon_{0} r} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}}
\end{aligned}
$$

## Gauss: Planar Symmetry

Infinite slab with uniform charge density $\sigma$ Find E outside the plane


## Gauss: Planar Symmetry

Symmetry is Planar

$$
\overrightarrow{\mathbf{E}}= \pm E \hat{\mathbf{x}}
$$

Use Gaussian Pillbox
Note: $A$ is arbitrary (its size and shape) and should divide out


## Gauss: Planar Symmetry

Total charge enclosed: $q_{i n}=\sigma A$
NOTE: No flux through side of cylinder, only endcaps

$$
\begin{aligned}
\Phi_{E} & =\oiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E \oiint_{S} d A=E A_{\text {Endcaps }} \\
& =E(2 A)=\frac{q_{i n}}{\varepsilon_{0}}=\frac{\sigma A}{\varepsilon_{0}}
\end{aligned}
$$

$$
E=\frac{\sigma}{2 \varepsilon_{0}} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{\sigma}{2 \varepsilon_{0}}\left\{\begin{array}{cc}
\hat{\mathbf{x}} & \text { to right } \\
-\hat{\mathbf{x}} & \text { to left }
\end{array}\right\}
$$



## PRS Question: Slab of Charge

## Group Problem: Charge Slab

Infinite slab with uniform charge density $\rho$
Thickness is $2 d$ (from $x=-d$ to $x=d$ ).
Find E everywhere.


## PRS Question: Slab of Charge

## Potential from E

## Potential for Uniformly Charged Non-Conducting Solid Sphere

 From Gauss's Law$$
\overrightarrow{\mathbf{E}}=\left\{\begin{array}{cc}
\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}, & r>R \\
\frac{Q r}{4 \pi \varepsilon_{0} R^{3}} \hat{\mathbf{r}}, & r<R
\end{array}\right.
$$

$$
\text { Use } \quad V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}
$$



## Point Charge!

Region 1: $r>a$

$$
\frac{V_{B}-\underbrace{V(\infty)}_{=0}}{V()_{\infty}} \frac{Q}{r} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} d r=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}
$$

## Potential for Uniformly Charged Non-Conducting Solid Sphere

Region 2: $r<a$

$$
\begin{aligned}
V_{D} & -\underbrace{V(\infty)}_{=0}=-\int_{\infty}^{R} d r E(r>R)-\int_{R}^{r} d r E(r<R) \\
& =-\int_{\infty}^{R} d r \frac{Q}{4 \pi \varepsilon_{0} r^{2}}-\int_{R}^{r} d r \frac{Q r}{4 \pi \varepsilon_{0} R^{3}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R}-\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R^{3}} \frac{1}{2}\left(r^{2}-R^{2}\right) \\
& =\frac{1}{8 \pi \varepsilon_{0}} \frac{Q}{R}\left(3-\frac{r^{2}}{R^{2}}\right)
\end{aligned}
$$

## Potential for Uniformly Charged Non-Conducting Solid Sphere



## Group Problem: Charge Slab

Infinite slab with uniform charge density $\rho$
Thickness is $2 d$ (from $x=-d$ to $x=d$ ).
If $V=0$ at $x=0$ (definition) then what is $V(x)$ for $x>0$ ?


## Group Problem: Spherical Shells



These two spherical shells have equal but opposite charge.

Find E everywhere

Find $V$ everywhere (assume $\mathrm{V}(\infty)=0$ )

