Class 10: Outline

Hour 1: DC Circuits

Hour 2: Kirchhoff's Loop Rules

Last Time: Capacitors & Dielectrics

Capacitors & Dielectrics

Capacitance

To calculate:

- 1) Put on arbitrary ±Q
- 2) Calculate E
- 3) Calculate ΔV

Energy $U = \frac{Q^2}{2C} = \frac{1}{2}Q|\Delta V| = \frac{1}{2}C|\Delta V|^2 = \iiint u_E d^3 r = \iiint \frac{\varepsilon_o E^2}{2}d^3 r$

This Time: DC Circuits

Examples of Circuits

Current: Flow Of Charge

Average current I_{av} : Charge ΔQ flowing across area A in time Δt

Instantaneous current: differential limit of I_{av}

$$I = \frac{dQ}{dt}$$

Units of Current: Coulombs/second = Ampere

Direction of The Current

Direction of current is direction of flow of pos. charge

or, opposite direction of flow of negative charge

Current Density J

 $\hat{\boldsymbol{I}}$ points in direction of current

$$I = \int_{S} \vec{\mathbf{J}} \cdot \hat{\mathbf{n}} \, dA = \int_{S} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$$

Why Does Current Flow?

If an electric field is set up in a conductor, charge will move (making a current in direction of E)

Note that when current is flowing, the conductor is not an equipotential surface (and $E_{inside} \neq 0$)!

Microscopic Picture

Drift speed is velocity forced by applied electric field in the presence of collisions.

It is typically 4x10⁻⁵ m/sec, or 0.04 mm/second!

To go one meter at this speed takes about 10 hours!

How Can This Be?

Conductivity and Resistivity

Ability of current to flow depends on density of charges & rate of scattering

Two quantities summarize this:

σ: conductivity

ρ: resistivity

Microscopic Ohm's Law

 ρ and σ depend only on the microscopic properties of the material, not on its shape

Demonstrations: Temperature Effects on ρ

PRS Questions: Resistance?

Why Does Current Flow?

Instead of thinking of Electric Field, think of potential difference across the conductor

Ohm's Law

What is relationship between ΔV and current?

$$\Delta V = V_b - V_a = -\int_a^b \vec{\mathbf{E}} \cdot d \vec{\mathbf{s}} = E\ell$$

$$V_b = I = \frac{I}{\rho} = \frac{\Delta V/\ell}{\rho}$$

$$J = \frac{I}{A} \Rightarrow \Delta V = I \left(\frac{\rho\ell}{A}\right) = IR$$

Ohm's Law

R has units of Ohms (Ω) = Volts/Amp

Examples of Circuits

Symbols for Circuit Elements

Sign Conventions - Battery

Moving from the negative to positive terminal of a battery **increases** your potential

Sign Conventions - Resistor

Moving across a resistor in the direction of current decreases your potential

Sign Conventions - Capacitor

Moving across a capacitor from the negatively to positively charged plate **increases** your potential

Series vs. Parallel

Series

Parallel

Resistors In Series

The same current / must flow through both resistors

 $\Delta V = I R_1 + I R_2 = I(R_1 + R_2) = I R_{eq}$ $R_{eq} = R_1 + R_2$

Resistors In Parallel

Voltage drop across the resistors must be the same

 $\Delta V = \Delta V_1 = \Delta V_2 = I_1 R_1 = I_2 R_2 = I R_{eq}$

$$I = I_1 + I_2 = \frac{\Delta V}{R_1} + \frac{\Delta V}{R_2} = \frac{\Delta V}{R_{eq}}$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

P10-25

PRS Questions: Light Bulbs

Kirchhoff's Loop Rules

Kirchhoff's Rules

1. Sum of currents entering any junction in a circuit must equal sum of currents leaving that junction.

Kirchhoff's Rules

2. Sum of potential differences across all elements around any closed circuit loop must be zero.

Internal Resistance

Real batteries have an internal resistance, *r*, which is small but non-zero

Terminal voltage: $\Delta V = V_b - V_a = \mathcal{E} - Ir$

(Even if you short the leads you don't get infinite current)

Steps of Solving Circuit Problem

- 1. Straighten out circuit (make squares)
- 2. Simplify resistors in series/parallel
- 3. Assign current loops (arbitrary)
- 4. Write loop equations (1 per loop)
- 5. Solve

Example: Simple Circuit

You can simplify resistors in series (but don't need to)

What is current through the bottom battery?

Example: Simple Circuit

Start at *a* in both loops Walk in direction of current $-2\varepsilon - I_1 R - (I_1 - I_2) R = 0$ $-(I_2 - I_1) R + \varepsilon = 0$

Add these: $-2\varepsilon - I_1 R + \varepsilon = 0 \rightarrow I_1 = \frac{-\varepsilon}{R}$

We wanted
$$I_2$$
: $(I_2 - I_1)R = \mathcal{E} \rightarrow I_2 = \frac{\mathcal{E}}{R} + I_1$
 $I_1 = 0$

Group Problem: Circuit

Find meters' values. All resistors are R, batteries are \mathcal{E}

Power

Electrical Power

Power is change in energy per unit time

So power to move current through circuit elements:

$$P = \frac{d}{dt}U = \frac{d}{dt}(q\Delta V) = \frac{dq}{dt}\Delta V$$

Power - Battery

Moving from the negative to positive terminal of a battery **increases** your potential. If current flows in that direction the battery **supplies** power

Power - Resistor

Moving across a resistor in the direction of current **decreases** your potential. Resistors always **dissipate** power

$$P_{\text{dissipated}} = I \Delta V = I^2 R = \frac{\Delta V^2}{R}$$

Power - Capacitor

Moving across a capacitor from the positive to negative plate **decreases** your potential. If current flows in that direction the capacitor **absorbs** power (stores charge)

Energy Balance

$$\mathcal{E}I = I^2 R + \frac{Q}{C} \frac{dQ}{dt} = I^2 R + \frac{d}{dt} \left(\frac{1}{2} \frac{Q^2}{C}\right)$$

(power delivered by battery) = (power dissipated through resistor)
 + (power absorbed by the capacitor)

PRS Questions: More Light Bulbs