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From Galilean relativity to ... ? 

3.1 Speed of light is c to all observers 

Much of what we will study over the next several weeks boils down to a detailed examination 
of the consequences of Einstein’s hypothesis that all observers measure the speed of light 
to be c. The speed of light is thus an invariant — it is the same for all observers, in 
all frames of reference. As you will hopefully come to appreciate over the course of this 
semester, invariants are incredibly useful: we can exploit the fact that they are the same for 
all observers to facilitate many of the analyses we will want to perform. 
The invariance of the speed of light tells us that the distance light travels per unit time 

is the same to all observers. In the Galilean transformation, we saw that displacement, and 
thus distance between events, varies depending on frame. As a consequence speed (distance 
per unit time) must vary as well. The Galilean transformation is thus inconsistent with the 
idea that the speed of light is the same to all observers: it must be corrected. If displacement 
varies according to the frame of an observer, but something’s speed is invariant, we must 
fnd that time intervals vary by frame. Allowing the time interval to vary by frame is the 
only way that speed (displacement interval per unit time interval) can be invariant. 
It’s worth keeping in mind, however, that the Galilean transformation works very well in 

many circumstances, so it is approximately correct. Our “generalized” transformation law 
must be consistent with Galileo in some appropriate limit.� 

Aside: The invariance of the speed of light also means that it is a great thing on which 
to base a metrology standard. That’s why we take c to be exactly 2.99792458×108 meters per 
second. We then determine the meter to be the distance light travels in 1/(2.99792458×108) 
seconds. Techniques in atomic physics have taught us how to measure time intervals very� 
precisely, so this is a way of getting the meter out that capitalizes on what we measure best. 

3.2 Consequences I 

Before generalizing the Galilean transformation, let’s work through a few “thought experi-
ments” which illustrate some of the consequences of light speed’s invariance. We will consider 
two observers: Observer S is standing in a station; observer T is standing in a train that 
is moving with speed v through the station. These two observers each make measurements 
whose values we will compare. 
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First, imagine there is a light bulb inside the train. This bulb emits a pulse of light at 
some moment; we call this event A. The pulse of light propagates downward through the 
train, striking a photodetector on the foor, which records the moment the light strikes. We 
call this event B. Events A and B are geometric objects; all observers agree on the existence 
of these two things happening, though they may label the coordinates in time and space of 
these events diferently. 
We being our analysis by asking: What interval of time do observers T and S measure 

between events A and B? 

v

T

S h

Let’s do this frst in observer T ’s frame of reference. Observer T sees the light move through 
a vertical displacement h, so they deduce 

∆tT = h/c . (3.1) 

Observers in the station agree that the light moves through a vertical distance h, but also 
see it move through a horizontal distance that depends on the train’s speed: p

h2 + (v∆tS )2 

∆tS = D/c = , (3.2) 
c 

from which we fnd 

h/c
∆tS = p ≡ γ∆tT , (3.3) 

1 − v2/c2 

1 � �−1/2 
where γ = p = 1 − β2 . (3.4) 

1 − v2/c2 
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v

Notice that the factor γ ≥ 1. The interval of time as measured on the station is longer than√ 
the interval measured on the train. For example, if the train moves at v = 3c/2 and the 
observers on the train measure 7 nanoseconds for the light to reach the photodetector, then 
observers in the station measure 14 nanoseconds for the light to reach the photodetector. 
Less time accumulates between the two events according to train observers than accumulates 
according to station observers. 

Moving clocks run slow. This is a phenomenon known as time dilation.� 
Aside: In doing this analysis, we’ve assumed that both the train and the station� 

observers measure the same height h for the light’s vertical displacement. Hold that thought! 

3.3 Consequences II 

Let’s next imagine that we arrange the light pulse so that it travels to the front of the car, 
bounces of a mirror, and returns to a photosensor1: 

Both the train and station observers measure the time interval between the fash and the 
light striking the photodetector, and use this to infer the length of the train car. On the 
train (neglecting the size of the light bulb and the fnite thickness of the sensor and mirror 
which are features of the sketch), the observer measures a time interval of ∆tT between the 

1A common question asked about this set up is “Why the bounce? Why not have the photosensor on 
the front of the train so that the light only travels one way?” The reason we include the bounce is that for 
this frst examination of light travel phenomena, it is very convenient for the net displacement of the light 
pulse to be zero along the direction of the train’s travel in frame T . We will develop tools to handle more 
general situations very soon. Doing so, we’ll see that having the light begin and end at the same coordinate 
in frame T simplifes the analysis in a way that is very useful for exploring basic concepts. (Notice that the 
net displacement along the direction of travel was zero in the previous example too.) 
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fash and the light striking the photodetector, and deduces that the train has a length 

∆xT = c∆tT /2 . (3.5) 

The size measured by observers on the train is just the time it takes light to travel from one 
end of the train to the other and back, divided by two. 
To compute the size measured by observers in the station, let’s break the calculation into 

two pieces: one piece gives us the time to travel from the bulb fash to reach the mirror; the 
other times travel from the mirror back to the photodetector. The interval of time measured 
for these two legs is 

(∆xS + v∆tS,1) ∆xS
∆tS,1 = −→ ∆tS,1 = ; (3.6) 

c c − v 
(∆xS − v∆tS,2) ∆xS

∆tS,2 = −→ ∆tS,2 = . (3.7) 
c c + v 

Notice the asymmetry in the two contributions: in the frst interval, the light travels the 
length of the train ∆xS plus the additional distance the train moves during this time in-
terval; in the second interval, the light again travels the length ∆xS , but now minus the 
additional distance the train moves. The fash of light “chases” the mirror during interval 
1, but is heading toward the advancing photodetector during interval 2. We add these two 
contributions to get the total travel time: 

2∆xS /c
∆tS = ∆tS,1 +∆tS,2 = 

1 − v2/c2 

= 2γ2∆xS /c . (3.8) 

We have now related ∆tS to ∆xS , and ∆tT to ∆xT . What we really want is a relation 
between ∆xS and ∆xT . To cut through the diferent relations, let’s take advantage of our 
previous result that the moving clock runs slow, i.e. that ∆tS = γ∆tT . Using this, we can 
rewrite Eq. (3.8) as 

γ∆tT = 2γ
2∆xS /c . (3.9) 

But we know that ∆tT and ∆xT are related by Eq. (3.5). Using this in Eq. (3.9) yields 

∆xS = ∆xT /γ . (3.10) 

This at last relates the spatial distance measured by the train observer to that measured by 
the station observer. Note that since γ ≥ 1, Eq. (3.10) means the distance interval measured 
in the station is shorter than the distance interval measured on the train. 

Moving rulers are shortened along the direction of motion. This is a phenomenon known 
as length contraction. 
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3.4 Consequences III 

Are moving rulers afected along axes other than along the direction of motion? The answer 
is no: If they were, then we would get inconsistent physics — diferent events occurring in 
diferent frames of reference. √ 
Imagine a train going at a speed v = 3c/2, so that γ = 2. Suppose the train is 5 meters 

tall, and is approaching a tunnel whose opening is 8 meters high. If length contraction 
afected the train’s height, we’d have a serious problem: 

• Tunnel rest frame: The train’s height is contracted by a factor of γ, making it 2.5 
meters tall — easily ftting into the 8 meter tunnel opening. 

• Train rest frame: The tunnel’s height is contracted by a factor of γ, making it 4 
meters tall. The 5 meter train experiences a very high speed collision, destroying the 
train, the mountain into which the tunnel is carved, and very likely a good fraction of 
the surrounding countryside. 

We require all observers to agree on events, even if they describe them using diferent labels. 
But these two outcomes — train merrily passing through a tunnel in one frame; chaos, 
death, destruction, and sadness in another — are not mere diferences of label. These are 
completely inconsistent outcomes. 

In order for events to be consistent between diferent reference frames, it must be the case 
that moving rulers are unafected along directions orthogonal to their direction of motion. 
Post facto, this justifes our assumption that both the train observer and the station observer 
measure a vertical displacement of h, as we used in “Consequences I.” 

3.5 From Galileo to Lorentz 

In the examples we’ve discussed above, we have allowed our notions of time and space inter-
vals to get mixed up by our demand that all observers measure light to have a propagation 
speed of c. As we can see, this leads to some rather nonintuitive consequences. However, 
these consequences follow straightforwardly from our requirement that c be an invariant. 
Let us now think about how to mix up diferent intervals in a more systematic manner. 

Galilean transformations allowed diferent inertial frames to defne diferent standards for 
space: what’s “left” to you is a mixture of “left” and “forward” to someone with a diferent 
orientation; what’s “there” to you is “there and steadily moving farther away” to someone 
moving with a fxed speed. But time is the same for everyone. 
Let’s think about a category of transformations that can mix up space and time, doing 

so in such a way that the speed of light is left invariant. Let’s think about a station observer 
who labels events with coordinates (tS, xS , yS, zS ), and a train observer who labels events 
with coordinates (tT , xT , yT , zT ). The station observer sees the train moving with v = vex. 
We will begin by assuming that the train frame’s coordinates are related to those of the 

station with the following linear relations: 

tT = AtS + BxS (3.11) 

xT = DtS + FxS (3.12) 

yT = yS (3.13) 

zT = zS (3.14) 

22 



This form was chosen2 by noting that since we are moving along x, the coordinates y and 
z cannot be afected. We require it to be a linear transformation because non-linear terms 
(e.g., a t2 term) would make the transformation non-inertial. 
We now solve for A, B, D, F by matching important quantities in the two systems and 

imposing invariance of c. Our frst two steps are familiar from the Galilean transformation 
— we simply require that constant x coordinates in one frame move with speed v in the 
other frame. Let us focus in particular on the spatial origin: 

1. Match the spatial origin of the train frame, xT = 0, with events in the station frame 
at xS = vtS : 

xT = DtS + FxS 

0 = DtS + F vtS 

−→ D = −Fv . (3.15) 

This tells us that our x transformation law can be written xT = F (xS − vtS ). 

2. Next, match the origin of the station frame (xS = 0) to events in the train frame at 
xT = −vtT : 

xT = F (xS − vtS ) 

−vtT = −F vtS (3.16) 

This tells us that tT = FtS for events at xS = 0. But we also know 

tT = AtS + BxS (3.17) 

Plugging in xS = 0 and tT = FtS , we see that 

−→ F = A . (3.18) 

We have now pinned down 2 of the 4 unknown coefcients, and the transformation law 
for t and x reads 

tT = AtS + BxS (3.19) 

xT = −AvtS + AxS 

= A(xS − vtS ) . (3.20) 

To pin down A and B, we use the physics that is the focus of this lecture: all observers 
agree that light propagates with speed c, so we examine the propagation of light as 
measured in the two reference frames. 

2We do not use the letter C to avoid confusion with the speed of light. We also skip E to avoid confusion 
with energy, which we will be discussing soon. 
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3. Imagine a light pulse emitted at tS = tT = 0, and examine its propagation along the 
xT and xS axes. As seen in the station, it travels with xS = ctS ; as seen on the train, 
it travels with xT = ctT : 

xT = ctT 

A(xS − vtS ) = c(AtS + BxS ) (Substituting the transformation rules) 

A(ctS − vtS ) = c(AtS + BctS ) (Substituting xS = ctS) 

−AvtS = Bc2tS 

Av −→ B = − 
2c
. (3.21) 

The transformation law now reads 

tT = A(tS − vxS /c
2) (3.22) 

xT = A(xS − vtS ) . (3.23) 

4. Now look at how that pulse travels in the y direction according to observers in the 
station. They see it moving with xS = 0, yS = ctS . Observers on the train measure it 
moving diagonally, following a trajectory in xT and yT that satisfes 

(xT )
2 + (yT )

2 = c 2(tT )
2 . (3.24) 

Substitute xT = A(xS − vtS ), tT = A(tS − vxS /c
2), yT = yS = ctS , and fnally plug in 

xS = 0: 
2 2 2 2 2A2 2A2 v tS + c tS = c tS . (3.25) 

This is easy to solve for A: 
1 

A = p = γ . (3.26) 
1 − v2/c2 

(If you’re being really pedantic you might wonder why we don’t consider the negative 
square root. Consider the v = 0 limit, for which the two coordinate systems should be 
identical; this shows that you need the positive root here.) 

Our complete transformation law becomes � 
tT = γ tS − xS v/c

2 (3.27) 

xT = γ (−vtS + xS ) (3.28) 

yT = yS (3.29) 

zT = zS . (3.30) 

This result is called the Lorentz transformation. 
A few comments: First, we can make it a bit more symmetric looking by using the 

defnition β = v/c we introduced earlier, and by writing ctT and ctS as our time variables. 
This gives our time coordinates the same dimensions (or units) as for space. With these 
minor tweaks, the Lorentz transformation can be written in the matrix form  

ctT γ −γβ 0 0 ctS  
xT 

yT 

 = 
 
−γβ γ 0 0 
0 0 1 0 

 
 

xS 

yS 

 . (3.31) 

zT 0 0 0 1 zS 
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Second, note that Nature doesn’t care how we label the axes; we could very well have 
defned things moving in the y direction or the z direction, or some direction that is at an 
angle between those directions. If we had the train moving with v = vey, then we would 
have found  

ctT γ 0 −γβ 0 ctS  
xT 

yT 

 = 
 

0 1 0 0 
−γβ 0 γ 0 

 
 

xS 

yS 

 . (3.32) 

zT 0 0 0 1 zS 

You can probably deduce how things look for v = vez. 
Finally, how do we invert this transformation? The “brute force” approach is to compute 

the matrix inverse. However, a little physics helps us see the answer: If the station observer 
sees the train moving with v = vex, the train observer must see the station moving with 
v = −vex. They must develop exactly the same Lorentz transformation, but with the terms 
linear in v fipped in sign:  

ctS γ γβ 0 0 ctT  
xS 

yS 

 = 
 
γβ γ 0 0 
0 0 1 0 

 
 

xT 

yT 

 . (3.33) 

zS 0 0 0 1 zT 

It’s not hard to show that the matrix in Eq. (3.33) is the inverse of the matrix in Eq. (3.31). 

3.6 A comment on the road ahead 

Much of what we will do in the next few weeks essentially amounts to examining the conse-
quences of the Lorentz transformation, assessing what aspects of physics as we know it hold 
up and what aspects will need modifcation. Many of our discussions will involve “thought 
experiments” of the kind we discuss in the “Consequences” sections above. As such, one can 
be misled into thinking that much of “Einsteinian” physics is about abstract weird situations 
like trains that move at nearly the speed of light. 
I want to take this moment to make it clear that, though such discussions are useful for 

understanding important concepts, they are not what relativity is about. Like all physics, 
relativity is a framework by which we understand the world as we actually measure it. Special 
relativity in particular is one of the best-studied theories that we have; its consequences — 
including the physics of efects like time dilation — have been tested with exquisite accuracy. 
(Indeed, in a very real sense, magnetism is nothing more than a consequence of Coulomb’s 
law of electrostatics plus the Lorentz transformation.) In recent years, the consequences of 
general relativity have been measured and tested quite thoroughly as well. 
We study Einstein’s relativity because empirical experience has pointed to the fact that 

it describes our world exquisitely well. Because you are studying physics, you are likely to 
encounter people who wish to sell you an alternative3 . Many of them will claim that the only 
reason that Einstein gets the attention he is given is because physics has become efectively a 
priesthood. Some of these folks are bothered by the fact that many consequences of Einstein’s 

3I get at least 5 and as many as 30 emails a week in this theme; I occasionally get hand-written letters 
and self-published books. One guy sent me an adjustable wrench along with his book, I think because he 
claimed to be “throwing a monkey wrench” into all the “nonsense” that physics departments teach students. 
It’s actually quite a nice wrench. I use it at least twice a year to hook up a hose at my house at the start of 
summer, and to disconnect it when the weather gets cold. 
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relativity go against “common sense”; a few (including some of the more frightening ones who 
write to me) claim darker motivations. We will endeavor as much as possible to bring the 
consequences of relativity into this class, and to keep it grounded in experimental fact. One 
thing should be clear: if measurements did not agree with Einstein’s theories of relativity, 
we would have discarded these theories in a heartbeat. 

3.7 An aside on factors of c 

The speed of light c pops up so much in this subject that it’s very convenient in many 
analyses to defne your units such that c = 1. This means that if you measure time in 
seconds, your basic unit of length is the light second. Amusingly, this means that if you 
measure time in nanoseconds, your basic unit of length is the light nanosecond, which is 
almost exactly4 one foot. With this choice made, the units of time and space are identical, 
the factor β ≡ v, and the Lorentz transformation takes the form  

tT γ −vγ 0 0 tS  
xT 

yT 

 = 
 
−vγ γ 0 0 
0 0 1 0 

 
 

xS 

yS 

 . (3.34) 

zT 0 0 0 1 zS 

In my research, I usually set c = 1. I’m of mixed mind whether I should use these units 
in 8.033. On one hand, it is a great convenience, and cuts down on a symbol that strictly 
speaking isn’t needed; and it is certainly a choice of units that you will see in future course-
work. However, when studying relativity for the frst time, it is worth bearing in mind that 
there are quite a few major points that can be confusing. As a point of pedagogy, I’d rather 
not introduce minor points that also cause confusion. I will endeavor to keep c explicitly in 
formulas that I write on the board, in the notes, and on assignments, but the likelihood that 
I will occasionally mess up is very high. If you think a factor of c has been left out, please 
ask about it. 
When writing up your own assignments, if you’d like to use c = 1 units, feel free to do 

so, but please state that you have made this choice on your writeup. 

41 light nanosecond = 29.9792458 cm = 11.8029 inches = 0.9836 feet. 
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