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Lecture 4 
Spacetime, simultaneity, and the consequences of Lorentz 

4.1 From space and time to spacetime 

The Lorentz transformation shows us that the invariance of c requires space and time to 
be mixed together; what is “space” for one observer is a mixture of “space” and “time” for 
another. This should be familiar as far as spatial directions go — what is “left” for one 
observer can be a mix of “left” and “forward” for another — but mixing time and space 
like this surely feels somewhat odd. We can no longer think of space and time as separate 
things; we instead describe them as a new, unifed entity: spacetime. Each inertial observer 
splits spacetime into space and time; however, how they split into space and time difers. 
This is fundamentally why diferent inertial observers measure diferent intervals of time and 
diferent intervals of distance. 
One of the tools we will use to examine the geometry of spacetime is the spacetime 

diagram. This is a fgure that illustrates how space and time are laid out, as seen by an 
observer in some particular inertial frame. The convention in making such fgures is that the 
vertical axis denotes time, horizontal axes denote space. 
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Figure 1: Example of a spacetime diagram. An event is a single point. A worldline is the 
sequence of events swept out by an event as it moves through space and time, with a slope 
that depends on its velocity in the frame. A worldsheet is the set of events swept out by an 
extended set of events as they move through space and time. 
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The units of a spacetime diagram’s axes are usually chosen so that light moves on 45◦ lines 
with respect to the axes of the rest frame: 

x

t

Light cone: Opening 
of trajectories defined 

by motion of light.

1 m 2 m 3 m 4 m

1 m/c

2 m/c

3 m/c

(This is particularly natural if we choose units such that c = 1.) With such units, a pulse of 
light, moving through time and projected onto 1 spatial dimension, makes a lightcone with 
an opening angle of 90◦ . As we will discuss shortly, the lightcone plays an important role in 
helping us to fgure out how events are related to one another. 
When making a spacetime diagram, one draws axes corresponding to some particular 

observer. Suppose we draw the axes of some observer O who uses coordinates (t, x). How 
do we represent the coordinates (t ′ , x ′ ) of an observer O ′ who moves with v = vex according 
to O? In other words, what do the (t ′ , x ′ ) axes look like as seen by O? 
To fgure this out, let’s look at the transformation rule: 

ct ′ = γ(ct) − βγx (4.1) 

x ′ = −βγ(ct) + γx (4.2) 

The t ′ axis is defned as the set of events for which x ′ = 0: 

x x 
0 = −βγ(ct) + γx −→ t = = . (4.3)

βc v 

The x ′ axis is defned by the events for which t ′ = 0: 

βx vx 
0 = γ(ct) − βγx −→ t = = 

2 
. (4.4) 

c c 
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Figure 2 illustrates the (t ′ , x ′ ) axes as seen by O for an observer moving with v = 3c/2. 

Figure 2: Axes of observer O ′ as they appear in the frame of O. The dot represents a 
particular event. 

In this fgure, we show a particular event. This event is a geometric object, a single point in 
spacetime. Although both observers agree on where it is in spacetime, they assign it rather 
diferent space and time coordinates. (We will analyze the diferent labels observers attach 
to coordinates in some detail shortly.) 
We could equally well ask how the axes (t, x) appear according to O ′ — we simply use 

the inverse transformation rule, which yields 

′ x ′ ′ −vx ′ 
t = − for the t axis , t = 

2 
for the x axis. (4.5) 
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Figure 3: Axes of observer O as they appear in the frame of O ′ . 
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4.2 Simultaneous for me, not necessarily for thee 

Drawing transformed axes in this way illustrates why length contraction and time dilation 
arise: Events which are simultaneous — occurring at the same time — in one frame of 
reference are not simultaneous in another frame; events which occur in the same location in 
one frame do not occur in the same location in another frame. This is the essence of how 
“space” and “time” are mixed, but “spacetime” remains unifed. Diferent observers agree 
on “spacetime,” but they split it into “space” and “time” in diferent ways. 
Let’s illustrate this breakdown in simultaneity explicitly with a pair of spacetime di-

agrams. Figure 4 shows two events, A and B, which are simultaneous according to the 
observer O who uses coordinates (t, x): we have drawn several surfaces of constant t in this 
space, showing that these events are in a single such surface. 
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Figure 4: Events A and B occur at the same time t as measured by observer O. As measured 
by observer O ′ , event B occurs before event A. 

Do these events occur at the same time in the frame of the observer O ′ , who uses coordinates 
(t ′ , x ′ )? Defnitely not! We can see that event B occurs before event A according to O ′ . 
What does a surface of constant time t ′ look like in the coordinates (t, x)? We can fgure 

this out by using the Lorentz transformation: A surface of constant t ′ is the line in the (t, x) 
plane that corresponds to some value of t ′ : 

′ vx t ′ 
ct = γ(ct) − βγx −→ t = + . (4.6) 

c2 γ 

This is the same slope as the x ′ axis, so surfaces of constant t ′ appear as lines parallel to this 
axis. We show this in Fig. 5, making it clear that B comes earlier in time than A according 
to observer O ′ . 
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Figure 5: Events A and B occur at the same time t as measured by observer O. As measured 
by observer O ′ , event B occurs before event A. 

We also show a third event, C, which is simultaneous with A according to O ′ , but occurs 
later according to O. 

4.3 The invariant interval 

Many of the so-called “mysteries” and “counter-intuitive” aspects of physics in special rela-
tivity have their origin in this discussion: two events which are simultaneous to one observer 
will not be simultaneous to all observers. This, plus the fact that two events which occur at 
the same location in space according to one observer are not co-located according to other 
observers, is the root of phenomena such as time dilation and length contraction. 
Is there anything that holds consistently across frames? If there is, then it will defne an 

invariant, some quantity whose value all observers agree upon. Indeed, we can assemble an 
invariant from the “spacetime separation” of two events. Consider events A and B. Compute 
their separation in time and space in some given frame: 

∆t = tB − tA , ∆x = xB − xA , ∆y = yB − yA , ∆z = zB − zA . (4.7) 

From these quantities, compute 

∆s 2 ≡ −c 2∆t2 +∆x 2 +∆y 2 +∆z 2 . (4.8) 

Theorem: All inertial observers, in all reference frames, agree on the value of ∆s2 . 
This theorem is easily proved by simply examining (∆s ′ )2 , the invariant interval computed 

using the coordinate separation of the events as measured in some other frame: 

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ∆t = t − tA , ∆x = x − xA , ∆y = y − yA , ∆z = z − z . (4.9)B B B B A 
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Let us relate these “primed” separations to the “unprimed” ones using the Lorentz transfor-
mation along x we’ve been using: 

c∆t ′ = γ(c∆t) − γβ∆x , (4.10) 

∆x ′ = −γβ(c∆t) + γ∆x , (4.11) 

∆y ′ = ∆y , (4.12) 

∆z ′ = ∆z . (4.13) 

Let us now compute (∆s ′ )2: 

′ )2 ′ )2(∆s = −(c∆t ′ )2 + (∆x ′ )2 + (∆y ′ )2 + (∆z (4.14) 

= −γ2(c∆t)2 + 2γ2β(∆x)(c∆t) − γ2β2(∆x)2 

+ γ2β2(c∆t)2 − 2γ2β(c∆t)(∆x) + γ2(∆x)2 

+∆y 2 +∆z 2 (4.15)� � � � 
2 2 2 = −c 2∆t γ2(1 − β2) +∆x γ2(1 − β2) +∆y 2 +∆z (4.16) 

= −c 2∆t2 +∆x 2 +∆y 2 +∆z 2 (4.17) 

= ∆s 2 . (4.18) 

The frst line of this is just the defnition of (∆s ′ )2 . To go to the second line, we’ve used the 
Lorentz transformation to express the primed-frame quantities in terms of unprimed-frame 
quantities. To go to the third line, we gather terms together, canceling out the terms that 
involve (∆x)(c∆t), and gathering common factors of ∆x2 and c2∆t2 . To go to the fourthp
line, we used the fact that γ = 1/ 1 − β2 . That line reproduces ∆s2 , demonstrating1 that 
this quantity is a Lorentz invariant. 
We are going to do a lot with ∆s2 , a quantity that we call the invariant interval (of-

ten abbreviated to just the “interval”). To start, it’s worth noting that perhaps the most 
important property of this quantity is whether it is negative, positive, or zero: 

• ∆s2 < 0: in this case, the interval is dominated by ∆t. We say that the two events 
have timelike separation. When ∆s2 < 0, it means that we can fnd some Lorentz 
frame in which the events A and B have the same spatial position (i.e., in that frame 
xA = xB, yA = yB , zA = zB); the events are only separated by time in that frame. We √ 
defne ∆τ ≡ −∆s2/c to be the time elapsed between events A and B in that frame. 
We call ∆τ the proper-time interval — it is the interval of time measured by the 
observer who is at rest in the frame in which A and B are co-located. 

It’s worth noting that if the interval between two events is timelike, then one can 
imagine a signal which travels with speed v < c that connects them. 

• ∆s2 > 0: the interval here is dominated by ∆x2 + ∆y2 + ∆z2 , and we say that the 
two events have spacelike separation. In this case, we can fnd a Lorentz frame in 
which events A and B are simultaneous; ∆s is the distance between these events in 
that frame. We call ∆s the proper separation of A and B. 

1It is easy to verify that this works for the transformation along any axis. In another lecture or two, we 
will introduce notation that makes proving the invariance of quantities like this really easy for any Lorentz 
transformation. 
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p
• ∆s2 = 0: in this case, we fnd that c∆t = ∆x2 +∆y2 +∆z2 — events A and B have 
a lightlike or “null” separation. If ∆s2 = 0, then these events can be connected by a 
light pulse. 

The last point helps us to see that the value of ∆s2 is very closely connected to the properties 
of the lightcone mentioned earlier. Suppose a fash of light is emitted from event A. If the 
interval between A and another event is negative, ∆s2 < 0, then the other event must be 
inside the lightcone. If the interval is positive, then the event must be outside the lightcone. 
And if ∆s2 = 0, then the other event must be on the light cone itself. Figure 6 illustrates 
how these notions connect to the lightcone. 
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Figure 6: The intervals between events A and F and events A and P are timelike: ∆sAF 
2 < 0, 

∆sAP 
2 < 0. In all frames, event F has time coordinate greater than the time coordinate of 

event A: tF > tA. Event F is unambiguously in the future of event A. Likewise, event P has 
time coordinate less than the time coordinate of event A: tP < tA in all frames. Event P is 
unambiguously in the past of event A. Events A and O have a spacelike interval: ∆sAO 

2 > 0. 
Event O is neither in the future nor the past of A; it is “elsewhere,” so the time-ordering of 
these events is not invariant. Events A and L have a lightlike or null interval: ∆sAL 

2 = 0. 
These events are connected by a light beam in all reference frames. 
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4.4 The geometry of spacetime 

The relationship ∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2 essentially expresses the Pythagorean 
theorem for spacetime. For intuition, consider the Pythagorean theorem purely in space. On 
a fat two-dimensional surface, a right triangle whose sides are ∆x and ∆y has a hypotenuse 
whose length is determined from ∆s2 = ∆x2 +∆y2 . In three dimensions, the distance from 
(x, y, z) to (x +∆x, y +∆y, z +∆z) is given by ∆s2 = ∆x2 +∆y2 +∆z2 . 
In spacetime, it turns out to be extremely useful to regard ∆s2 = −c2∆t2 +∆x2 +∆y2 + 

∆z2 as expressing an invariant notion of “distance squared” between two events. Students 
usually want to know “Why does the c2∆t2 have a minus sign?” The best answer I can give 
is that this is how the geometry of the universe works. The fact that time enters ∆s2 with a 
diferent sign from space refects the fact that time is fundamentally quite diferent from the 
other directions of spacetime. We can forward and backward; we can move left and right; 
we can move up and down. But we can only move toward the future — we cannot step back 
to the past. 
Indeed, the whole notion of “past” and “future” depends on events’ separation in space-

time. If two events are timelike or lightlike separated, then one can describe one event as 
being the future, and one in the past. Although the specifc time coordinates assigned to 
these events will vary by reference frame, the time ordering of these events is invariant: if 
tF > tA in one frame, and if the interval between events A and F is timelike or lightlike, 
then tF > tA in all reference frames. However, if two events are spacelike separated, then 
their time ordering depends on reference frame. Consider the situation shown in Figure 7: 

Figure 7: Observer O measures coordinates for events A and B using the (t, x) axes. Observer 
O ′ , who travels with velocity v = (c/2)ex according to O, measures coordinates for these 
events using the (t ′ , x ′ ) axes. 

Suppose observer O measures these events at the coordinates (tA, xA) = (2 sec, 2 lightsec), 
(tB, xA) = (3 sec, 5 lightsec). So, for observer O, event A happens frst. However, the invari-
ant interval between these events, 

∆s 2 = −c 2∆t2 +∆x 2 = −(1 lightsec)2 + (3 lightsec)2 = 8 lightsec2 , (4.19) 
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is positive — these events are spacelike separated, so diferent observers may very well order 
them diferently. 
Let’s use the Lorentz transformation to compute the events’ coordinates according to√ 

O ′ . Given the relative speed c/2, we have γ = 2/ 3, β = 1/2. Applying the Lorentz 
transformation, we fnd � �√ √ 

ct ′ A = γtA − βγxA = 4/ 3 − 2/ 3 lightsec = √ 
2 
lightsec , (4.20)
3� �√ √ 

′ 2 
xA = −βγtA + γxA = −2/ 3 + 2/ 3 lightsec = √ lightsec ; (4.21)

3� �√ √ 
′ 1 

ctB = γtB − βγxB = 6/ 3 − 5/ 3 lightsec = √ lightsec , (4.22)
3� �√ √ 

xB 
′ = −βγtB + γxB = −3/ 3 + 10/ 3 lightsec = √ 

7 
lightsec . (4.23)
3 

� � 
′ ′ 2 2 −→ (tA, xA) = √ sec, √ lightsec 

3 3 
≃ (1.15 sec, 1.15 lightsec) (4.24) � � 

′ ′ 1 7 −→ (tB, xB ) = √ sec, √ lightsec 
3 3 

≃ (0.577 sec, 4.04 lightsec) . (4.25) 

Notice that t ′ > t ′ the order of the events is reversed according to observer O ′ . UsingA B : 
these numbers, it is not difcult to show that O ′ nonetheless fnds ∆s2 = 8 lightsec2 . 
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