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Kinematics in spacetime 

6.1 Transforming velocities 

With what we’ve done so far, we’ve started to develop a good understanding of length, time, 
and geometry in spacetime. This is a good start for us to begin understanding physics in 
special relativity, but it’s just a start. 
In this lecture, we start examining kinematics — the properties of moving bodies, and 

how these properties transform between diferent reference frames. We begin by looking at 
velocity. Consider frame T , tied to a train, and consider a person walking inside that train. 
This train is moving with velocity v = vex as seen by an observer who is at rest in the 
station frame S. The person who is walking inside the train is seen to walk with speed ux

T , 
also in the x direction, by an observer who is at rest in frame T . (Comment: we will try as 
much as possible to use the letter u to stand for speeds inside a particular frame; we will try 
to use v to describe the speeds and velocities that relate two diferent frames.) 
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What is the speed ux
S that observers in frame S measure? In Newtonian physics, we 

would just add the velocities in frame T to the velocity that frame T has relative to S. To 
get ux

S in a world in which all observers agree that light moves at speed c, we work this 
out using the Lorentz transformation. On the train, we know that in a time interval ∆tT 

observer T moves through a distance ∆xT = u 
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x
T∆tT . Both the time interval and the space 



interval are afected by the transformation: 

γ(∆xT + v∆tT )x ∆xS 
u = = S ∆tS γ(∆tT + v∆xT /c2) 

(∆xT /∆tT + v) 
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c
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∆
∆ 
x
t 
T

T 
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uT
x + v 

= 
x . (6.1)

1 + uT v/c
2 

This formula has an interesting consequence: using it, we can prove that we can never add 
sub-light speeds to get a speed that exceeds the speed of light. You will work this out in 
detail on a problem set, but to see the general idea, imagine that ux

T = v = 0.9c. Then, 

x 0.9c + 0.9c 1.8c 
u = = = 0.9945c . (6.2)S 1 + (0.9c)(0.9c)/c2 1.81 

How do components of the velocity perpendicular to the frames’ relative motion trans-
form? Imagine that the person on the train has motion along the y direction as well, so that 
in ∆tT they move through ∆yT = uy

T ∆tT . Then, 

y ∆yS ∆yT 
u = = S ∆tS γ(∆tT + v∆xT /c2) 

yu 
= T

x . (6.3)
γ(1 + uT v/c

2) p
(Note that the factor γ = 1/ 1 − v2/c2 — it only depends on the relative speed v of the 
two frames, it does not involve the velocity u.) If the person on the train has velocity along 
the z direction, then it transforms like Eq. (6.3) as well, replacing uy with uz . 

6.2 Momentum I: Did we break physics??? 

A lesson of the previous section is that how velocities add is “weird” as compared to New-
tonian expectations. These expectations follow the logic of Galilean relativity, so it should 
not be too surprising that things change when we impose the rule that c is the same to 
all observers. However, our laws of classical mechanics have implicitly assumed Galilean 
relativity. What happens to important principles like conservation of momentum when we 
“update” our rules for how velocities add? 
Let us frst review how conservation of momentum works in Newtonian physics. Suppose 

that we have Ni bodies that come together in some fashion, interact, and then have Nf 

bodies in the fnal state. Conservation of momentum tells us that 

Ni NfX X 
initial initial fnal fnal m u = m u . (6.4)j j j j 

j=1 j=1 

As long as 
Ni NfX X 

initial fnal m = m , (6.5)j j 
j=1 j=1 
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collide and rebound elastically. We assume that it remains the case that p 
by examining this situation in the center of momentum frame, i.e. the frame 
momentum of the system is zero: 

Before

uinit
A

uinit
B

After

ufin
B

ufin
A

this relation holds in all Galilean reference frames. 
Let’s take a look at what happens when we examine this law in Lorentzian reference 

frames. Let’s consider something really simple: two particles, A and B, of identical mass 
that = mu, and 
begin in which 
the net 

Figure 1: Elastic collision of identical bodies in the center of momentum frame. 

init x y init x yThe bodies’ velocities are given by uA = u ex − u ey, uB = −u ex + u ey before the 
fn x y init x ycollision. Afterwards, we have uA = u ex + u ey, uB = −u ex − u ey. Because mA = mB, 

we can see that momentum is clearly conserved: It is zero both before and after the collision. 
Let’s next examine this from another frame of reference. Suppose we examine this col-

lision from a frame that moves with velocity v = −uxex with respect to the center of 
momentum frame. The horizontal motion of particle B is canceled out here; if we are in this 
frame, we are essentially jogging along with particle B. 
What are the velocity vectors in this frame? To fnd out, we use the relativistic velocity 

addition formulas we just worked out to get the components of these vectors. Let’s do the x 
components frst: 

x ux + ux 2ux 
′ 

uA = = , (6.6)
1 + (ux)2/c2 1 + (ux)2/c2 

ux − ux 
′ 

uB
x = = 0 . (6.7)

1 − (ux)2/c2 

Notice in this frame, the horizontal velocity components are not equal and opposite, and 
so the system must have some non-zero horizontal momentum component. This is not 
surprising: we’ve moved into a frame in which the entire system is moving in the +x direction, 
so we expect the system to have momentum along x. 
Next, look at the y components: p 

uy uy 1 − (ux)2/c2 

uy
A 

′ 
= − = − , (6.8)

γ(1 + (ux)2/c2) 1 + (ux)2/c2 

y y′ u u 
uB
y = = p . (6.9)

γ(1 − (ux)2/c2) 1 − (ux)2/c2 

The γ that we use here is the one corresponding to the velocity of this frame relative to thep 
center of momentum frame: v = −uxex , and so γ = 1/ 1 − (ux)2/c2 . 
Notice that the velocity components in the vertical direction are no longer equal and 

opposite. This means that they do not balance out, and so the system has net momentum 
in the vertical direction. In other words, under the hypothesis that momentum p = mu, we 
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this in mind, we re-examine the collision from the Lorentz frame in which 
horizontal motion: 

Before collision, frame in 
which B only moves vertically

uv,A
uv,B

uh

appear to have a problem: The system appears to have acquired momentum in the y direction 
by moving into a new frame that is moving in the −x direction with respect to the center of 
momentum frame. 
Our hypothesis that c is the same to all observers, which led to our new velocity addition 

rules, appears to have broken momentum. 

6.3 Momentum II: From Newtonian momentum to Einsteinian 
momentum 

This appears disturbing. However, we have already seen (and you examined on a pset) that 
the Lorentz transformations are approximately consistent with Galilean coordinate trans-
formations. Galilean relativity (and thus Newtonian physics) works fne when speeds are 
far smaller than c. Perhaps the root cause of this disturbing apparent breakdown is that 
Newtonian momentum (which respects Galilean relativity) is itself an approximation to a 
more “Lorentzian” quantity. 
Let us try the hypothesis that momentum is defned by 

p = α(u)mu . (6.10) 

The function α(u) is a function corrects the magnitude of momentum, and only depends on 
the magnitude of the body’s velocity u. 
With particle 

B has no 

To simplify some of the analysis which will follow later, we’ve introduced new labels for the 
velocity components of these bodies: uh is the horizontal velocity component of body A in 
this frame; uv,A is the vertical velocity component of A in this frame; and uv,B is the vertical 
velocity component of B in this frame. Comparing to our previous calculations given in 
Eqs. (6.6), (6.8), and (6.9), these velocity components according to the relativistic velocity 
addition formula are given by p

2ux uy 1 − (ux)2/c2 uy 

uh = , uv,A = − , uv,B = p . (6.11)
1 + (ux)2/c2 1 + (ux)2/c2 1 − (ux)2/c2 

These velocity components turn out to be nicely related to one another. Notice that � � 
1 − (ux)2/c2 

uv,A = −uv,B . (6.12)
1 + (ux)2/c2 
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The factor in parentheses in Eq. (6.12) turns out be related to uh in an interesting way. 
Calculate the value of γ for v = uh: � �−1/2

1 4(ux)2/c2 

γ(uh) = p = 1 − 
1 − (uh)2/c2 (1 + (ux)2/c2)2 � �−1/2
1 − 2(ux)2/c2 + (ux)4/c4 

= 
1 + 2(ux)2/c2 + (ux)4/c4 � �−1/2
(1 − (ux)2/c2)2 

= 
(1 + (ux)2/c2)2 

1 + (ux)2/c2 

= . (6.13)
1 − (ux)2/c2 

Modulo a reciprocal, this is exactly the parentheses factor in (6.12). This allows us to rewrite 
this equation as 

uv,A = −uv,B /γ(uh) . (6.14) 

Let’s take advantage of this to remake the fgure of the collision in this frame using only 
the velocity components uh and uv,B for our labels: 

If momentum is conserved, then we expect the situation after the collision to look as follows: 

The logic by which we have sketched this is that the horizontal components of the bodies’ 
motion cannot be afected by the collision, so body A continues moving to the right with 
speed uh, and body B continues to have no horizontal motion. The vertical motions reverse 
in direction. We leave open the possibility that the speeds associated with the vertical motion 
might be afected (hence the primes: uv,B 

′ might difer from uv,B ). 
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We now demand conservation of momentum according to our hypothesized new form: 
both components of p = α(u)mu must be the same before and after the collision. First look 
at the horizontal component, for which the only contribution comes from body A: �q � �q � 

α (uh)2 + (uv,B /γ(uh))2 muh = α (uh)2 + (u ′ /γ(uh))2 muh . (6.15)v,B 

The only way that this equation can hold independent of the function α(u) (whose nature 
we don’t yet know) is if u ′ = The speed associated with the vertical components’ v,B uv,B. 
of the bodies’ velocities must be the same before and after the collision. Those velocity 
components simply change direction. 
Require next that the vertical components of momentum be conserved: �q � 

α(uv,B)muv,B − α (uh)2 + (uv,B/γ(uh))2 muv,B/γ(uh) = �q � 

− α(uv,B )muv,B + α (uh)2 + (uv,B/γ(uh))2 muv,B/γ(uh) 

Moving similar looking factors to the same side of the equation, dividing by a common factor 
of muv,B , and multiplying by γ(uh), this becomes �q � 

α (uh)2 + (uv,B/γ(uh))2 = γ(uh)α(uv,B ) . (6.16) 

To simplify this, let us require that α(0) = 1. This requirement insures that this formula 
recovers the Newtonian limit, which we know is an extremely good approximation for small 
speeds. We then examine Eq. (6.16) in the limit uv,B → 0: 

α(uh) = γ(uh) . (6.17) 

The factor α(u) that we hypothesized must be included in the defnition of momentum works 
perfectly if it is the special relativistic γ factor. 
In summary, the momentum defned by 

p = γ(u)mu (6.18) 

is conserved in a universe that respects Lorentz covariance. 

6.4 Kinetic energy 

In Newtonian physics, the change in kinetic energy is the work done on a body: Integrating 
from some initial position xi to a fnal position xf , we have Z f ZZ f fdp d 

Kf − Ki = · dx = (mu) · u dt = m u · du 
dt dti i i 

1 � 
2 2 

� 
= m uf − ui . (6.19)
2 

51 



�������� ����

We now defne relativistic kinetic energy in exactly the same way, but replace the Newtonian 
formula for momentum with the version we just derived: Z f Z fdp d 

Kf − Ki = · dx = [γ(u)mu] · u dt 
dt dti i Z f 

" # 
u 

= m u · d p . (6.20) 
i 1 − u2/c2 

The fact that this second form of Kf − Ki is identical to the frst one is not obvious. It is 
not difcult however to demonstrate that the two lines of (6.20) are equivalent by using the 
chain rule to expand the two diferentials. 
The fnal integrand that we have derived can be manipulated further: " # " # 

2u u u · du 
u · d p = d p − p . (6.21) 

1 − u2/c2 1 − u2/c2 1 − u2/c2 

This is a very nice form: the frst term on the right-hand side of (6.21) is a perfect diferential; 
the second term on the right-hand side is simple to integrate up. Doing so, we fnd 

f2 Z f mu u · du 
Kf − Ki = p −m p

1 − u2/c2 
i i 1 − u2/c2 

2 pf f 
mu 

= p +mc 2 1 − u2/c2 . (6.22) 
1 − u2/c2 

i i 

For our fnal simplifcation, let’s take the initial velocity to be ui = 0, and defne uf ≡ u. 
Since the initial velocity is zero, the initial kinetic energy Ki = 0. We set Kf ≡ K and 
fnally obtain for the kinetic energy of the system 

mu2 p
K = p + mc 2 1 − u2/c2 − mc 2 

1 − u2/c2 

mu2 + mc2 − mu2 

= p − mc 2 

1 − u2/c2 

2mc 
= p − mc 2 

1 − u2/c2 

= [γ(u) − 1] mc 2 . (6.23) 

To interpret this quantity, we defne the body to have a total energy 

E = γ(u)mc 2 ; (6.24) 

then, E = K + mc2 , and we interpret mc2 as the body’s rest energy: energy which the 
body possesses even when it is not in motion. 
It’s fair to say that Eq. (6.24) with γ = 1 is the most famous physics equation in the 

world. It is really interesting to pause and refect on how it arose: we began by exploring 
the consequences of the hypothesis that light travels at speed c for all observers. This forced 
us to replace the Galilean transformation with the Lorentz transformation. This in turn 
mandated an adjustment to the defnition of momentum. The formula E = mc2 , which 
some would argue literally changed the world, thus arose fundamentally as a consequence of 
this deceptively simple hypothesis. 
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6.5 Aside: “Relativistic mass” and why we generally don’t use it 
anymore 

In some older texts, you will see the energy and momentum defned as follows: 

E = m(u)c 2 , p = m(u)u , (6.25) 

where they have defned m(u) = γ(u)m, the “relativistic mass” of the body whose “rest 
mass” is m. This defnition rarely appears in modern relativity texts. Instead, the only 
“mass” used to defne a body is its rest mass. The main reason for this is that m is an 
invariant — diferent observers assign a diferent energy to the body, depending on its speed 
u in their rest frame, but they all agree that the body’s mass is m (and its energy is mc2) 
in its own rest frame. As we will see in the next lecture, this invariant plays a particularly 
important rule in helping us to defne a 4-vector which will prove to be extremely useful in 
helping us to keep track of energy and momentum in relativistic physics. 
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